

THERMOPLASTIC HOSES FOR THE OIL AND GAS INDUSTRY

Oil & Gas Catalogue 4465 – Global Edition 2023

ENGINEERING YOUR SUCCESS.

1

В

С

D

Ε

F

G

INTRODUC	CTION AND GENERAL STATEMENTS
How to use	the catalog
Part numbe	r system
Explanatior	of symbols
Hose fitting	chart
Parker Han	nifin – Polyflex Division
Advantages	s of Parker Oil & Gas Hoses
Value adde	d services
ARAMID H	OSES
High pressu	ure aramid hose
HCR Hoses	з B – 10
WIRE HOS	ES
High pressu	ure wire hoses with PA11 core tube
High pressu	ure wire hoses ChemJec
20,000psi v	vire hose Nautilus20
SUBSEA B	OP HOSES
High pressu	ure subsea BOP hoses
HYDROST	ATIC TESTING HOSE
Ultra high p	eressure hoses and fittings
Black E	agle Hose Family
The Blac	k Eagle hose family for well services. F - 2
Constructio	νηF-4
Hose overv	iew
Hose speci	fications
HOSE UM	BILICALS
Multitube H	loses G - 2

4	WORKSHOP EQUIPMENT Parker Polyflex guidelines for hose assembly and workshop certification
I	ACCESSORIES AND TOOLING Containment grips
J	TECHNICAL INFORMATION Parker engineering manual (PFDE-ES 28) J – 2 Pressure drop tables J – 46 Recommended tightening procedures J – 48 Test equipment for qualification testing and production control J – 49 Parker safety guide. J – 54 Glossary J – 63 Unit conversion table. J – 65
<	INDEX OF PART NUMBERS

Safety note.

The content contained in this catalogue has been compiled with the greatest care and corresponds to the information currently available to us.

However, we would like to point out that we reserve the right to make technical changes and we kindly request you to contact us should you have any special questions.

K – 8

HOW TO USE THE CATALOGUE

OVERALL STRUCTURE OF THE CATALOGUE:

Fitting data is always colored in yellow

PART NUMBER SYSTEM

FITTINGS

EXPLANATION OF SYMBOLS

SYMBOL	DESCRIPTION
#	Part number
$\textcircled{\textbf{0}}$	Nominal inner diameter
\odot	Nominal outer diameter
\bigcirc	Working pressure
	Burst pressure
<i>"</i> A	Bend radius
	Weight
	Fittings
<u></u>	Thread size
$\langle \mathbf{H} \rangle$	Wrench size
→	Thickness

HOSE FITTING CHART

Fitting	Fitting description	Fitting designation
	National Pipe Tapered (NPT) Male Fitting	01
	JIC Female Swivel Fitting	06
	Type "M" Female Swivel Fitting	AY
	BSP Female Swivel Fitting	92
	Metric Female Swivel Fitting with O-ring	C9

HOSE FITTING CHART

Fitting	Fitting description	Fitting designation
	Hammer Union (Male) Cone with Wing Nut End Fitting	HE
	Hammer Union (Female) Cone Threaded End with Seal	HN
	Medium Pressure Tube Nipple	Y2
	API Flange rigid	8К
	API Flange swivel	8K

PARKER HANNIFIN - POLYFLEX DIVISION

Parker Hannifin offers an extensive programme of systems and components for fluid technology. Parker is structured by sales offices and manufacturing divisions to guarantee optimum focus on our customers' demands and market interests at any time.

The Polyflex division, with headquarters located in Hüttenfeld, Germany, provides thermoplastic hoses and tubes. These are applied in a variety of different markets such as standard hydraulics, ultra high pressure applications, and oil & gas industry. As a market leader in many areas and with a unique product range we are pleased to assist you with all your queries.

This catalogue includes hoses and fittings for the Oil&Gas industry. The indicated fittings are always adapted to the correspondent hose and offer optimum performance.

OTHER CATALOGUES WITH THERMOPLASTIC HOSES

Catalogue 4460-UK

Catalogue 4462-UK

Catalogue 4466-UK

ADVANTAGES OF PARKER OIL & GAS HOSES

Parker thermoplastic hose is the right answer for many technical challenges. With unique features and performance characteristics thermoplastic hose outrivals even established alternatives. Whether the task requires extreme temperatures, pressures, robustness or special custom designs, these hoses will not disappoint you.

See below the features offered by our hose range – in comparison to other standard hose types:

COMPACT OD

- · Space saving due to very small diameters
- More hoses can be installed in the same situation
- · Use hoses as small as you need them

LOW WEIGHT

- · Major weight savings
- Energy savings as less mass needs to be moved

CUSTOMIZATION

- Multiple colors
- Multiple lines
- Bundles
- Customer specific designs

CLEANLINESS

- Less abrasion and contamination inside the hose
- Reduced residue build up
- Extended lifetime for filters, valves and hydraulic systems

PERMEATION RESISTANCE

- Highly limited gas egression
- Reduced ingression reduced risk of media contamination

LONG LENGTH

- Up to 5,000 m and more continuous length
- Less joints & fittings needed
- Easy winching and handling offer fast deployment of long length

HIGHEST PRESSURE

- Up to 4,000 bar working pressure
- Highest technical standards and production controls assure safety

VALUE ADDED SERVICES

Parker Polyflex and the Parker Sales Companies offer value added services that compliment our production capabilities and product portfolio. These services are in place to meet the increasing customization and system criteria that our customers expect from a world-class supplier. The value added services detailed below are typical of the products and secondary services that we provide to our customers. If you have additional service needs that we have not detailed below please contact us. We are happy to discuss all potential solutions for your requirements.

PARKERSTORE™

At Parker Hannifin, we're continually looking for ways to deliver more products, more efficiently.

The Global ParkerStore™ network enables Parker to provide:

- Prompt, efficient, professional in-store services
 while you wait
- · Expert local services and support
- A safe, friendly and convenient shopping environment
- A greater range of parts options so you get exactly what you're looking for.

Customers trust ParkerStores to provide OEM and MRO customers with direct access to:

- Custom-made hydraulic hose assemblies and complementary products to support their applications and decrease their downtime
- Expert technical support
- Professional, personalized services, including 24/7/365 support
- The convenience, comfort and amenities of a local service provider.

HOSEFINDER

Parker	ENDIN
HoseFinder	
ed a touse of Mirgh" of resulting to tags (or both this) the paper does along too to every the attractions of the same to Mirght and the paper participant of the same to Mirght and the Attraction participant of the same to the same attraction of the attraction of the same does by changes, the low a tabase of the patient term below does by changes, the low a tabase of the patient term below	
STAINF II Support Chief present state by a mean filling for any state state for mean filling for any state state 1 Mark	
Because A	
the of the stands of some strength whether	

Parker is committed to delivering customer service options to help you work smarter, faster, and better.

Need the latest? Go online. From complete product information on hose, to 3D-CAD models of our complete fitting line, you'll find everything you need at *www.Parker.com/Polyflex.*

And HoseFinder, our mobile app, makes it fast and convenient to search for hydraulic hose products and information on the go. The app features an abbreviated STAMP selection process to help you find what you need quickly and easily. Download yours today at

www.hosefinder.com.

1 Browse it.

It's easy to use.

2 STAMP it.

Use the STAMP search or browse the catalog to find the product you are looking for.

3 Search it.

Results include all the details you need to make an informed decision.

4 Find it.

Choose the "Find It" link and you'll be directed to one of Parker's 12,000 worldwide distributor locations. HoseFinder is currently available for iPhone[®], Blackberry[®] and AndroidTM mobile phones.

THE PARKER® TRACKING SYSTEM ENTERPRISE (PTS)

is designed to help customers reduce vehicle or asset down-time through increases in the speed, timing and accuracy of necessary repairs. PTS provides a unique 8 digit identification code and bar code printed on a durable label for each hose assembly. PTS labels are specifically engineered to withstand harsh chemicals, temperatures, UV exposure and other challenging conditions.

- · PTS captures, records and recalls unique hose assembly information - on demand
- · Provides fast and accurate product indentification to speed up replacement regardless of where the original assembly was made.
- · Assembly can be replaced with only the 8 digit PTS ID number/ bar code eliminating the need to remove hoses prior to replacement. This can provide critical machine uptime and enable more conveniently scheduled repair.
- PTS includes additional reporting tools to assist in continuous improvement programmes and preventative maintenance initiatives.

PARKER HOSE DOCTORS

are a network of independently-owned, mobile service technicians built around the commitment to identify and replace hose assemblies wherever their customers need them, with the fastest response times possible. HOSE DOCTORS® are an extension of the worldwide Parker distribution network, coupling their service commitment with Parker products - the highest quality hoses and fittings available in the market today.

PARKER STORE CONTAINER SERVICE

The ParkerStore container is a transportable workshop, providing on-site maintenance and product support for large construction projects such as roadworks, tunnels, railways, underground systems, etc. Provides an on-site product and hose replacement service. With this service on your site, you can reduce your downtime keeping your project on time and on budget!

TECH SERVICES

Optimises the performance of your hydraulic and pneumatic circuits

- With Parker Tech Services involved, your time to market is shorter, which saves on development costs
- The 3 year no-leak guarantee enhances your reputation and lowers your warranty costs
- More reliable operation lowers your customer's operating costs
- More efficient performance and no-leak guarantee is beneficial to the environment
- Parker worldwide coverage ensures you can use the service and save costs wherever you are

BREADMAN

Lean logistics and delivery of Parker products and kits directly to the customer's assembly line, work stations or warehouse

- 100 % parts availability minimises downtime, increases production and reduces costs
- Elimination of stock checking reduces manpower and maintains production levels
- · Daily delivery reduces inventory and overheads
- Electronic order processing eliminates paperwork and reduces administration costs

KITTING

Multiple components are supplied under a single part number

- Reduced number of suppliers
- Reduced stocks and no obsolete items
- · Optimized management (stock and supplies)
- · Simplified and optimised order handling
- Reduced assembly costs
- Greater productivity

NOTES		

В

CHAPTER B

ARAMID HOSES

High pressure aramid hoses.	 	 	B-4
HCR Hoses	 	 	B-10

HIGH PRESSURE ARAMID HOSES

В

polyflex high pressure aramid hoses are available in different designs and configurations for a wide range of applications.

- Hose series 575XN and 2022N, available in long continuous lengths are designed and qualified acc. ISO
 13628-5 / API 17E. They are often used in umbilicals for hydraulic control or MEG / methanol injection
- Hose type HCRV is especially designed as HCR hose for applications where collapse resistance is required

APPLICATION

2022N and 575X are often used in umbilicals, Hydraulic Flying Leads (HFL) and Jumpers for hydraulic control lines or MEG / methanol injection lines. SeaWolf is used as BOP stack hose and in subsea applications where collapse pressure is a critical value.

- Hydraulic Control
- Chemical Injection
- Methanol Injection
- Lubrication
- BOP Control
- Subsea BOP hose

в

FEATURES

polyflex high pressure aramid hoses fulfill the design requirements of ISO 13628-5 / API 17E and combine the most required features to form unique products for the Oil&Gas market:

- Seamless Polyamide core tubes in different grades (PA11 and methanol washed PA11)
- Unique designs to increase collapse resistance
- High strength aramid fibers for high working pressures
- Long continuous lengths up to 3,300 m without splicing

BENEFITS

Customers worldwide benefit from the products in different ways:

- The compact designs helps to reduce OD of umbilicals, and therefore to reduce the size of equipment
- The increased service life of hoses supports the reduction of life cycle costs
- Developed for subsea and/or deep sea applications
- · Enables increased umbilical lengths

HIGH PRESSURE ARAMID HOSES

1/4" 5,000 psi High pressure aramid hose 575XN-4

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +55°C
	-40°F up to +131°F
MAX. LENGTH	3,000 m / 9,843 ft
SPECIFICATION	Fully compliant with ISO 13628-5 / API 17E

575XN-4

192AH-4-4C

PF 1/4-19

55.9

2.2

27.0

C	0	(\supset	\langle	3			R ×		۲ ها	C O	Colla	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	12.7	0.500	34.5	5,000	138.0	20,000	51	2.0	0.12	0.08	4.03	585	4.0

JIC female sw	vivel	Material: AISI 316 / 316Ti										
#	<u>~~~~~</u>	A		В		В		$\langle \mathbf{H} \rangle$	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	inch	mm	inch	inch	inch	MPa	psi	E C		
106AH-4-4C	7/16 - 20 UNF	60.0	2.36	31.0	1.22	9/16	5/8	34.5	5,000	н		
BSP female s	wivel (60° cone)						Materia	al: AISI 31	6 / 316Ti			
#	<u>~~~~~</u>		4	I	в	$\langle \mathbf{H} \rangle$	$\langle \mathbf{J} \rangle$	(3			
		mm	inch	mm	inch	mm	mm	MPa	psi	ĘĘĘ		

1.06

17

19

34.5

5,000

1/4" 10,000 psi High pressure aramid hose 2022N-04V91

CO	NSTRUCTION	Core tube
		Pressure reinforcement
		Cover
		Colour Black
TEMPE	RATURE RANGE	-40°C up to +55°C
		-40°F up to +131°F
M	AX. LENGTH	3,000 m / 9,843 ft
		Fully several and with ICO 10000 F (ADI 17F
SPI	ECIFICATION	Fully compliant with ISO 13628-57 API 17E

2022N-04V91

C	o		\supset	\bigcirc			\sim		\mathcal{A}				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	13.8	0.543	69	10,000	276.0	40,000	100	3.9	0.128	0.087	9.6	1,392	4.0

JIC female swivel # $\langle \mathbf{H} \rangle$ 7 Α в mm mm mm MPa psi 1068X-4-04C 7/16 - 20 UNF 57.0 26.0 19 69.0 10.000 9/16 - 18 UNF 19 103.5 1068X-6-04C 55.0 24.0 15,000

BSP female swivel (60° cone)

#	<u></u>	A	В	$\langle \mathbf{J} \rangle$	(3
		mm	mm	mm	MPa	psi
1928X-4-04C	G 1/4	56.0	25.0	19	80.0	11,600

Type M female swivel

#	<u>^^^^</u>	A		1	3)	
		mm	inch	mm	inch	mm	MPa	psi	
1AY8X-6-04C	9/16 - 18 UNF	66.0	2.6	33.0	1.30	19	103.5	15,000	

Medium pressure tube nipple

#	<u></u>	,	4	1	3		B B	
		mm	inch	mm	inch	MPa	psi	
1Y28X-6-04C	3/8 - 24 UNF - LH	120.0	4.72	87.0	3.43	138.0	20,000	u

Material: AISI 316 / 316Ti

—в-		
umunn	┉	

3/8" 5,000 psi High pressure aramid hose 575XN-6

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +55°C -40°F up to +131°F
MAX. LENGTH	3,000 m / 9,843 ft
SPECIFICATION	Fully compliant with ISO 13628-5 / API 17E

575XN-6

	\mathbf{D}	(\bigcirc		3			\mathcal{A}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
9.7	3/8	16.1	0.634	34.5	5,000	138.0	20,000	76	3.0	0.137	0.092	3.4	493	4.0

JIC female swivel

#	<u>^^^^</u>	A		В		$\langle \mathbf{H} \rangle$	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	inch	mm	inch	inch	inch	MPa	psi	F#H
106AH-6-6C	9/16 - 18 UNF	68.6	2.7	33.0	1.30	11/16	11/16	34.5	5,000	н

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

BSP female swivel (60° cone)

#	<u>~~~~~</u>	A		В		$\langle \mathbf{H} \rangle$	⟨H⟩⟨J⟩		3		
		mm	inch	mm	inch	mm	mm	MPa	psi	Ę₽ĘĽ	
192AH-6-6C	PF 3/8-19	62.0	2.44	27.0	1.06	19	22	34.5	5,000	_ј _н	

3/8" 10,000 psi High pressure aramid hose 2022N-06V91

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +55°C
	-40°F up to +131°F
MAX. LENGTH	1,950 m / 6,398 ft
SPECIFICATION	Fully compliant with ISO 13628-5 / API 17E

2022N-06V91

C		(\bigcirc		3			\mathcal{A}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
10	3/8	19	0.748	69	10,000	276.0	40,000	125	4.9	0.21	0.141	3.6	522	4.0

JIC female swivel				Material: AISI 316 / 316Ti					
#		Α	в	$\langle \mathbf{J} \rangle$	(3			
		mm	mm	mm	MPa	psi			
1063X-6-06C	9/16 - 18 UNF	69.0	33.0	22	69.0	10,000	<u> </u>		
PCD famale switch (60° cana) Motorial AICI 216 / 216Ti									

BSP female su	wivel (60° cone)				Material: Al	SI 316 / 316Ti
#	<u>^^^^</u>	А	В	$\langle \mathbf{J} \rangle$	(3
		mm	mm	mm	MPa	psi
1923X-8-06C	G 1/2	66.0	22.0	30	69.0	10,000

Α

mm

71.0

inch

2.8

Type M female swivel

#

1AY3X-8-06C

3/4 - 16 UNF

#		J	N N	1	3	(3	вА в	
		mm	inch	mm	inch	MPa	psi		
1Y23X-9-06C	9/16 - 18 UNF - LH	137.0	5.4	85.0	3.35	138.0	20,000	u	

mm

25.5

в

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

1/2" 5,000 psi High pressure aramid hose B 575XN-8

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +55°C -40°F up to +131°F
MAX. LENGTH	1,450 m / 4,757 ft
SPECIFICATION	Fully compliant with ISO 13628-5 / API 17E

575XN-8

(\mathbf{D}	(9	(2	2			A,		C ۵	Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.9	1/2	20.8	0.819	34.5	5,000	138.0	20,000	102	4.0	0.22	0.148	2.1	305	4.0

JIC female swivel

#	<u>^^^^</u>		4	E	В		$\langle \mathbf{H} \rangle \langle \mathbf{J} \rangle$		3	
		mm	inch	mm	inch	inch	inch	MPa	psi	Ęŧų.
106AH-8-8C	3/4 - 16 UNF	78.1	3.08	38.0	1.50	7/8	7/8	34.5	5,000	∼_ л ∕н

BSP female swivel (60° cone)

#	<u>~~~~~</u>	A			В		$\langle H \rangle \langle J \rangle$		3	
		mm	inch	mm	inch	mm	mm	MPa	psi	₽₽₽₽
192AH-8-8C	PF 1/2-14	70.6	2.78	31.0	1.22	24	27	34.5	5,000	└─J └─H

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

A	-1
Mar I	ή
Ę r ł	

1/2" 10,000 psi High pressure aramid hose 2022N-08V91

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +55°C -40°F up to +131°F
MAX. LENGTH	950 m / 3,117 ft
SPECIFICATION	Fully compliant with ISO 13628-5 / API 17E

2022N-08V91

C		$\bigcirc \bigcirc$		2			A				Collapse pressure		DF	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.8	1/2	23.2	0.914	69	10,000	276.0	40,000	100	3.9	0.34	0.225	1.61	233	4.0

JIC female swivel						Mat	erial: AISI	316 / 316Ti	
#		А		E	3	$\langle \mathbf{H} \rangle$		\bigcirc	
		mm	inch	mm	inch	mm	MPa	psi	
106LX-8-08C	3/4 - 16 UNF	94.0	3.7	39.4	1.55	27	69.0	10,000	
BSP female swivel (6	0° cone)				Mai			316 / 316Ti	A
#	<u>^^^^^</u>	A	А		(J	\rangle	Ċ)	
		mm	ı	mm	m	n	MPa	psi	
192LX-8-08C	G 1/2	75.	75.0		30)	130.0	18,850	∕_,
Type M female swive	I					Mate	erial: AISI	316 / 316Ti	
#	<u>^^^^</u>	A		в	(J	\rangle	Ċ)	
		mm	ı	mm	m	n	MPa	psi	
1AYLX-11-08C	1 - 12 UNF	80.	0	27.0	32	2	130.0	18,850	∇_{μ}
Medium pressure tub	oe nipple					Mat	erial: AISI	316 / 316Ti	
#	<u>^^^^</u>		A		в		(3	B
		mm	inch	m	m	inch	MPa	psi	
1Y2I X-12-08C	3/4 - 16 LINE - LH	157 5	62	10	3.5	4 07	138.0	20.000	u

В

HCR HOSES

1/2" 5,000 psi High collapse resistant hose HCRV-8-xyz

CONSTRUCTION	Core tube
	Pressure reinforcement High tensile aramid fiber braids
	Cover
	ColoursBLU: blue, -YEL: yellow (standard colours)
TEMPERATURE RANGE	-40°C up to +55°C
	-40°F up to +131°F
MAX. LENGTH	Please contact Parker Hannifin
SPECIFICATION	Fully compliant with ISO 13628-5 / API 1/E
CERTIFICATES	ABS Product Design Assessment (PDA) Certificate 13-HS1036876-PDA
CENTIFICATES	

HCRV-8-xyz

C	0	0	\supset	\langle	3			A				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.7	1/2	26.4	1.040	34.5	5,000	138.0	20,000	102	4.0	0.67	0.45	45.6	6,600	4.0

JIC female swivel

Material: AISI 316 / 316Ti

#	<u>^^^^^</u>	A		В		$\langle \mathbf{H} \rangle$	⟨H⟩⟨J⟩		3	
		mm	inch	mm	inch	inch	inch	MPa	psi	EH.
106HV-8-8C	3/4 - 16 UNF	107.9	4.25	47.4	1.87	1 3/8"	15/16"	34.5	5,000	н

1" 5,000 psi High collapse resistant hose HCRV-16-xyz

Material: AISI 316 / 316Ti

CONSTRUCTION	Core tube Carcass: 316L SS with Polyamide Pressure reinforcement High tensile aramid fiber braids
	Cover
TEMPERATURE RANGE	-40°C up to +55°C -40°F up to +131°F
MAX. LENGTH	Please contact Parker Hannifin
SPECIFICATION	Fully compliant with ISO 13628-5 / API 17E
CERTIFICATES	ABS Product Design Assessment (PDA) Certificate 13-HS1036876-PDA

HCRV-16-xyz

C	\mathbf{D}	0	\supset				\mathcal{A}		L Bail		Collapse pressure		DF	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
25.4	1	46.5	1.830	34.5	5,000	138.0	20,000	300	11.8	2.15	1.44	45.6	6,600	4.0

JIC female swivel

$\langle \mathbf{J} \rangle$ $\langle \mathbf{H} \rangle$ Α в inch inch inch inch MPa mm mm psi 106HV-16-16C 1 5/16 - 12 UN 166.2 6.55 67.8 2.67 2 3/8" 1 5/8" 34.5 5,000

в

NOTES

CHAPTER C

WIRE HOSES

High pressure wire hoses with PA11 core tube.	4
High pressure wire hoses ChemJec	4
20,000psi wire hose Nautilus20	D

HIGH PRESSURE WIRE HOSES

polyflex High pressure wire hoses offer best characteristics for usage in offshore applications like umbilicals, hot lines or annulus lines. In accordance with ISO 13628-5 / API 17E the very compact design results in a minimal OD which helps to reduce the size of the complete equipment. The high collapse resistant hoses are available in long continuous lengths up to 5,000m, and in some cases even more.

APPLICATION

Typical applications are usage in umbilicals, HFL and jumpers, or as hot lines and annulus lines with additional sheath:

- Hydraulic Control
- Chemical Injection
- Methanol Injection
- Lubrication
- BOP Control

FEATURES

polyflex High pressure wire hoses combine the most required features to form unique products for the Oil&Gas market:

- · Seamless methanol washed PA11 or fluoropolymer based core tubes
- High strength wire for high working pressures
- · Long continuous lengths of more than 5,000 m without splicing
- High collapse resistance
- Meet and exceed the performance requirements of ISO 13628-5 / API 17E

BENEFITS

Customers worldwide benefit from the products in different ways:

- The compact designs helps to reduce OD of umbilicals, and therefore to reduce the size of equipment
- The increased service life of hoses supports the reduction of life cycle costs
- · Developed for subsea and deep sea applications
- · Enables increased umbilical lengths

HIGH PRESSURE WIRE HOSES WITH PA11 CORE TUBE

1/4" 6,250 psi High pressure wire ho	se
2240N-04V91	

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40 F up to +212 F, max. 156 F for water or methanor based huids.
MAX. LENGTH	3,200 m / 10,499 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2240N-04V91

(\mathbf{D}	(\odot				K. 2		Ð			Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.5	1/4	11.6	0.460	43	6,250	172.5	25,000	70	2.8	0.17	0.11	10	1,450	4.0

JIC female swivel

#			4	В		$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
106RX-4-04C	7/16 - 20 UNF	52.0	2.05	23.0	0.91	17	43.0	6,250	
106RX-6-04C	9/16 - 18 UNF	53.5	2.11	24.5	0.96	19	43.0	6,250	

BSP female swivel (60° cone)

#		A		В		$\langle \mathbf{H} \rangle$	(2	
		mm	inch	mm	inch	mm	MPa	psi	
192RX-4-04C	G 1/4	50.5	1.99	22.0	0.87	17	43.0	6,250	- C _H

HIGH PRESSURE WIRE HOSES WITH PA11 CORE TUBE

1/4" 10,000 psi High pressure wire hose 2340N-04V91

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	5,000 m / 16,404 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2340N-04V91

C	D	0	\supset	\langle	3			5	Ð	۲ للا	۲ ۵	Colla	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	12.5	0.490	69	10,000	276.0	40,000	70	2.8	0.23	0.15	15.4	2,234	4.0

JIC female swivel		Material: AIS	1 316 / 316Ti				
#	<u>^^^^^</u>	A	В	$\langle \mathbf{H} \rangle$	(3	
		mm	mm	mm	MPa	psi	
1068X-4-04C	7/16 - 20 UNF	57.0	26.0	19	69.0	10,000	
1068X-6-04C	9/16 - 18 UNF	55.0	24.0	19	103.5	15,000	

BSP female swivel (60° cone)

#	<u>^^^^</u>	A	в	$\langle \mathbf{J} \rangle$	(3
		mm	mm	mm	MPa	psi
1928X-4-04C	G 1/4	56.0	25.0	19	80.0	11,600

Type M female swivel

#	<u>^^^^^</u>	A		E	3	$\langle \mathbf{J} \rangle$	\bigcirc	
		mm	inch	mm	inch	mm	MPa	psi
1AY8X-6-04C	9/16 - 18 UNF	66.0	2.6	33.0	1.30	19	103.5	15,000

Medium pressure tube nipple

#	<u></u>		A		В		B A	
		mm	inch	mm	inch	MPa	psi	
1Y28X-6-04C	3/8 - 24 UNF - LH	120.0	4.72	87.0	3.43	138.0	20,000	u

Material: AISI 316 / 316Ti

A
87
F #2
X .

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

1/4" 10,000 psi High pressure wire hose 2380N-04V91

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	3,000 m / 9,843 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2380N-04V91

C	\mathbf{D}	0	\supset	(3			5	Ð	۲ ها	C M	Coll	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	13.4	0.530	69	10,000	276.0	40,000	70	2.8	0.27	0.18	23.9	3,465	4.0

JIC female swivel

#	<u></u>	Α	в	$\langle \mathbf{H} \rangle$	(3	Ē
		mm	mm	mm	MPa	psi	
1068X-4-04C	7/16 - 20 UNF	57.0	26.0	19	69.0	10,000	viii e
1068X-6-04C	9/16 - 18 UNF	55.0	24.0	19	103.5	15,000	

BSP female swivel (60° cone)

#	<u>^^^^</u>	Α	в	$\langle \mathbf{J} \rangle$	(2
		mm	mm	mm	MPa	psi
1928X-4-04C	G 1/4	56.0	25.0	19	80.0	11,600

Type M female swivel

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

#		Α		E	3	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
AY8X-6-04C	9/16 - 18 UNF	66.0	2.6	33.0	1.30	19	103.5	15,000	

Medium pressure tube nipple

Material: AISI 316 / 316Ti

#	<u>^^^^</u>		4	I	3	(2	B-B-A
		mm	inch	mm	inch	MPa	psi	
1Y28X-6-04C	3/8 - 24 UNF - LH	120.0	4.72	87.0	3.43	138.0	20,000	u

#
1/4" 12,500 psi High pressure wire hose 2440N-04V91

vashed PA11	

CONSTRUCTION	Core tube
	Cover
EMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	3,750 m / 12,303 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440N-04V91

-

C	\mathbf{D}	(\supset	(3			5	Ð	ی ا	۳ ۱	Coll pres	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	13.1	0.520	86.5	12,500	345.0	50,000	150	5.9	0.31	0.21	24.7	3,582	4.0

JIC female swivel							
#	<u>^^^^</u>	A	в	$\langle \mathbf{H} \rangle$	(
		mm	mm	mm	MPa	psi	
1068X-6-04C	9/16 - 18 UNF	55.0	24.0	19	103.5	15,000	

Type M female swivel

#	<u></u>		А		3	$\langle \mathbf{J} \rangle$	()	
		mm	inch	mm	inch	mm	MPa	psi	H.
1AY8X-6-04C	9/16 - 18 UNF	66.0	2.6	33.0	1.30	19	103.5	15,000	ς,

Medium pressure tube nipple

#	<u>^^^^^</u>	A		E	3	(B-A	
		mm	inch	mm	inch	MPa	psi	
1Y28X-6-04C	3/8 - 24 UNF - LH	120.0	4.72	87.0	3.43	138.0	20,000	

Material: AISI 316 / 316Ti

A	-
ræ	1
₩₩Ų L	

1/4" 15,000 psi High pressure wire hose 2448N-04V91

С			
С			
С.	1	-	

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour Black
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	2,750 m / 9,022 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2448N-04V91

C	\mathbf{D}	(9	\langle	2	2		5	Ð	۲ ه	B	Colla	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	13.7	0.539	103.5	15,000	414.0	60,000	150	5.9	0.38	0.26	40.7	5,900	4.0

Type M female swivel

#		A		I	3	$\langle \mathbf{J} \rangle$	(\bigcirc	
		mm	inch	mm	inch	mm	MPa	psi	
1AY8X-6-04C	9/16 - 18 UNF	66.0	2.6	33.0	1.30	19	103.5	15,000	

Medium pressure tube nipple

#	<u>^^^^</u>	A		I	В		3	вА
		mm	inch	mm	inch	MPa	psi	
1Y28X-6-04C	3/8 - 24 UNF - LH	120.0	4.72	87.0	3.43	138.0	20,000	u

JIC female swivel

#	<u></u>	A	а в 🕢		(
		mm	mm	mm	MPa	psi	
1068X-6-04C	9/16 - 18 UNF	55.0	24.0	19	103.5	15,000	

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

вАА	•
CH -	

3/8" 6,250 psi High pressure wire hose 2370N-06V91

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	2,200 m / 7,218 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2370N-06V91

C	\mathbf{D}	(\supset	\bigcirc				\mathcal{A}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
9.9	3/8	16.5	0.650	43	6,250	172.5	25,000	120	4.7	0.33	0.22	9.4	1,363	4.0

JIC female swivel

#	<u></u>	А		В		$\langle \mathbf{J} \rangle$	\bigcirc		A
		mm	inch	mm	inch	mm	MPa	psi	ti t
106NX-6-06C	9/16 - 18 UNF	58.0	2.28	28.0	1.10	19	43.0	6,250	<u>`</u>

BSP female swivel (60° cone)

#	<u></u>	A			В		\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
192NX-6-06C	G 3/8	55.0	2.17	25.0	0.98	22	43.0	6,250	ر_\

Material	ΔISI	316	/ 316Ti

	1
-8	
	t
<u> </u>	

3/8" 6,450 psi High pressure wire hose 2390N-06V91

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
EMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
MAX. LENGTH	3,500 m / 11,483 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2390N-06V91

C	\mathbf{D}	0	9	\bigcirc				\mathcal{A}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
9.8	3/8	18.1	0.710	44.5	6,450	178.0	25,800	120	4.7	0.41	0.28	15	2,175	4.0

JIC female swivel

#	<u>^^^^^</u>	A		E	в (н		\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
1069X-8-06C	3/4 - 16 UNF	74.0	2.91	31.0	1.22	24	69.0	10,000	

BSP female swivel (60° cone)

#	<u>^^^^^</u>	A		В		$\langle \mathbf{H} \rangle$	\bigcirc			
		mm	inch	mm	inch	mm	MPa	psi		
1929X-6-06C	G 3/8	63.5	2.5	24.5	0.96	22	69.0	10,000	CH CH	

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

3/8" 7,500 psi High pressure wire hose 2380N-06V91

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour Black
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	2,000 m / 6,562 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2380N-06V91

C	\mathbf{D}	(\supset	\langle	\bigcirc				\mathcal{A}				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
9.8	3/8	17.9	0.700	51.7	7,500	207.0	30,000	120	4.7	0.44	0.3	13.5	1,958	4.0

JIC female	swivel
------------	--------

#	<u></u>		4	I	в	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
1068X-8-06C	3/4 - 16 UNF	69.5	2.74	30.5	1.20	24	69.0	10,000	ς,

BSP female swivel (60° cone)

#	<u>^^^^</u>	A B		$\langle \mathbf{J} \rangle$	(3	
		mm	mm	mm	MPa	psi	
1928X-6-06C	G 3/8	59.0	19.0	22	69.0	10,000	~,

A	
8	
1000	
L	

3/8" 12,500 psi High pressure wire hose 2440N-06V91

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	6,000 m / 19,685 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440N-06V91

C	\mathbf{D}	0	\supset	(3	2		5	Ð	۲ ها	C 9	Colla	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
9.8	3/8	19.5	0.770	86.5	12,500	345.0	50,000	190	7.5	0.73	0.49	32.2	4,670	4.0

JIC female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>	1	В		3	$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
106LX-6-06C4462	9/16 - 18 UNF	74.5	2.93	29.0	1.14	22	69.0	10,000	Сн (
106LX-8-06C4462	3/4 - 16 UNF	78.0	3.07	32.5	1.28	24	86.5	12,500	

Type M female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>		4	1	в	$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
1AYLX-8-06C4462	3/4 - 16 UNF	78.0	3.07	32.5	1.28	27	103.5	15,000	

Medium pressure tube nipple

#	<u>^^^^</u>		4	I	В	(2	вввввввввв
		mm	inch	mm	inch	MPa	psi	
1Y2LX-6-06C4462	3/8 - 24 UNF - LH	128.5	5.06	76.5	3.01	138.0	20,000	u
1Y2LX-9-06C4462	9/16 - 18 UNF - LH	137.0	5.4	91.5	3.60	138.0	20,000	

1/2" 6,015 psi High pressure wire hose 2390N-08V91

CONSTRUCTION	Core tube				
	Pressure reinforcement High strength wire				
	Cover				
	Colour				
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.				
	-40°F up to +212°F, max. 156°F for water or methanol based huids.				
MAX. LENGTH	5,600 m / 18,373 ft				
	(for longer length requirements please contact Parker Hannifin)				
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E				

2390N-08V91

C	\mathbf{D}	(\supset	\langle	2			5 *	Ð		ت س	Coll pres	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.9	1/2	21.2	0.830	41.5	6,015	166.0	24,070	150	5.9	0.57	0.38	7.8	1,131	4.0

JIC female swivel Material: AISI 316 / 316Ti # $\langle \mathbf{H} \rangle$ Z в Α mm inch mm inch mm MPa psi 1069X-8-08C 3/4 - 16 UNF 81.0 3.19 38.0 1.50 27 69.0 10,000

BSP female swivel (60° cone)

#			А		В		(3		
		mm	inch	mm	inch	mm	MPa	psi		
1929X-8-08C	G 1/2	70.0	2.76	27.0	1.06	27	69.0	10,000	CH CH	

вА	

в —	н^¶
h	
H	

1/2" 7,500 psi High pressure wire hose 2380N-08V91

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fiulds.
MAX. LENGTH	3,000 m / 9,843 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2380N-08V91

		0	\supset	(3			5	Ð	ر ها	3	Colla	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.9	1/2	22.9	0.900	51.7	7,500	207.0	30,000	150	5.9	0.68	0.46	16.4	2,378	4.0

JIC female swivel

#	<u></u>		A	в		$\langle \mathbf{H} \rangle$	\bigcirc		Ē
		mm	inch	mm	inch	mm	MPa	psi	
106LX-8-08C	3/4 - 16 UNF	94.0	3.7	39.4	1.55	27	69.0	10,000	C.H
106LX-12-08C	1 1/16 - 12 UNF	88.0	3.46	44.0	1.73	32	34.5	5,000	

BSP female swivel (60° cone)

#	<u>^^^^</u>	A	в	$\langle \mathbf{J} \rangle$	(2
		mm	mm	mm	MPa	psi
192LX-8-08C	G 1/2	75.0	21.0	30	130.0	18,850

Type M female swivel

#	<u>^^^^</u>	A	в	$\langle \mathbf{J} \rangle$	(2
		mm	mm	mm	MPa	psi
1AYLX-11-08C	1 - 12 UNF	80.0	27.0	32	130.0	18,850

Medium pressure tube nipple

~~~~~~ Α в mm inch mm inch MPa psi 1Y2LX-12-08C 3/4 - 16 UNF - LH 157.5 6.2 103.5 4.07 138.0 20,000

Material: AISI 316 / 316Ti

вА

Material: AISI 316 / 316Ti

MPa	psi
130.0	18,850

Material: AISI 316 / 316Ti

1/2" 10,000 psi High pressure wire hose 2440N-08V91-10K

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based huids.
MAX. LENGTH	6,000 m / 19,685 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440N-08V91-10K

C	0		\odot		\bigcirc		1 miles		\mathcal{A}				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.9	1/2	22.7	0.892	69	10,000	276.0	4,000	200	7.9	0,94	0.63	18	2,610	4.0

JIC female swivel

#	<u>^^^^^</u>		4	в		$\langle \mathbf{H} \rangle$	(3	ŀ
		mm	inch	mm	inch	mm	MPa	psi	
106LX-8-08C	3/4 - 16 UNF	94.0	3.7	39.4	1.55	27	69.0	10,000	-

Type M female swivel

#	<u>^^^^</u>	А	в	$\langle \mathbf{J} \rangle$	(
		mm	mm	mm	MPa	psi	
1AYLX-11-08C	1 - 12 UNF	80.0	27.0	32	130.0	18,850	ζ,

Medium pressure tube nipple

#	<u></u>	,	4	E	3	(Б В	
		mm	inch	mm	inch	MPa	psi	
1Y2LX-12-08C	3/4 - 16 UNF - LH	157.5	6.2	103.5	4.07	138.0	20,000	

JIC female swivel

#	<u></u>		4	1	В		(3	F
		mm	inch	mm	inch	mm	MPa	psi	
106LX-12-08C	1 1/16 - 12 UNF	88.0	3.46	44.0	1.73	32	34.5	5,000	

BSP female swivel (60° cone)

#	<u>^^^^</u>	Α	в	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	mm	mm	MPa	psi	
192LX-8-08C	G 1/2	75.0	21.0	30	130.0	18,850	

Material: AISI 316 / 316Ti

AA	•
	_

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

вА	1
PH	l
	'

1/2" 12,500 psi High pressure wire hose 2448N-08V91

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

CONSTRUCTION	Core tube Pressure r
	Cover Colour
TEMPERATURE RANGE	-40°C up to -40°F up to
MAX. LENGTH	6,000 m / 1 (for longer

Core tube
Cover
-40°C up to +100°C, max. 70°C for water or methanol based fluids40°F up to +212°F, max. 158°F for water or methanol based fluids.
$6{,}000\mbox{ m}$ / 19,685 ft (for longer length requirements please contact Parker Hannifin)

SPECIFICATION Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2448N-08V91

С

	o		\supset	Max. working pressure				Min. bend radius				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.9	1/2	22.7	0.890	86.5	12,500	350.0	50,750	200	7.9	0.94	0.63	22.9	3,320	4.0

JIC female swivel

#	<u>^^^^^</u>	A		В		$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
106LX-8-08C	3/4 - 16 UNF	94.0	3.7	39.4	1.55	27	69.0	10,000	

Type M female swivel

#	<u></u>	Α	в	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	mm	mm	MPa	psi	
1AYLX-11-08C	1 - 12 UNF	80.0	27.0	32	130.0	18,850	

Medium pressure tube nipple

#	<u>^^^^</u>	A		E	3	(3		-•
		mm	inch	mm	inch	MPa	psi		
1Y2LX-12-08C	3/4 - 16 UNF - LH	157.5	6.2	103.5	4.07	138.0	20,000	. u	_

1/2" 15,000 psi High pressure wire hose 2640N-08V91

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE BANGE	-40°C up to +100°C, max, 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	3,500 m / 11,500 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2640N-08V91

C					<u>E</u>	\mathcal{R}		2 C (8)		Collapse pressure		DF		
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.9	1/2	24.7	0.970	103.5	15,000	4140.0	60,000	290	11.4	1,34	0.9	25.6	3,712	4.0

Type M female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^</u>	1	A		в		(3	
		mm	inch	mm	inch	mm	MPa	psi	
1AY5X-11-08C-M-Subsea	1 - 12 UNF	111.0	4.37	56.0	2.20	32	103.5	15,000	∕⊣н

Medium pressure tube nipple

#	<u>^^^^^</u>	A		I	в	(3	вА
		mm	inch	mm	inch	MPa	psi	
1Y25X-9-08C-M-Subsea	9/16 - 18 UNF - LH	164.2	6.46	72.0	2.83	138.0	20,000	u
1Y25X-12-08C-M-Subsea	3/4 - 16 UNF - LH	174.2	6.86	84.0	3.31	138.0	20,000	

3/4" 5,075 psi High pressure wire hose 2390N-12V91

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour Black
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	3,200 m / 10,499 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2390N-12V91

C	\mathbf{D}	0	\supset	\bigcirc				\mathcal{A}_{\bullet}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
19.6	3/4	29	1.140	35	5,075	140.0	20,300	250	9.8	0.9	0.6	6.4	928	4.0

JIC female swivel

#	<u>^^^^</u>	A		В		$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
1069X-12-12C	1 1/16 - 12 UNF	96.0	3.78	43.0	1.69	36	34.5	5,000	

BSP female swivel (60° cone)

#	<u>^^^^^</u>	A		1	3	$\langle \mathbf{H} \rangle$	(2	
		mm	inch	mm	inch	mm	MPa	psi	
1929X-12-12C	G 3/4	77.0	3.03	26.0	1.02	32	34.5	5,000	ut H

3/4" 10,000 psi High pressure wire hose 2440N-12V91

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids. -40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	5,000 m / 16,404 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440N-12V91

C		\odot \circlearrowright		3	ľ		A,				Collapse pressure		DF	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
19.9	3/4	30.2	1.190	69	10,000	250.0	36,250	250	9.8	1.46	0.98	10.6	1,537	36.0

JIC female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>	A			В	$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
106LX-12-12C4462	1 1/16 - 12 UNF	95.0	3.74	41.0	1.61	36	34.5	5,000	
106LX-16-12C4462	1 5/16 - 12 UNF	99.0	3.9	43.0	1.69	41	69.0	10,000	

Type M female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>	,	4	В		$\langle \mathbf{H} \rangle$	(3	Ē
		mm	inch	mm	inch	mm	MPa	psi	E
1AYLX-16-12C4462	1 5/16 - 12 UNF	92.0	3.62	38.0	1.49	41	103.5	15,000	

Medium pressure tube nipple

#		А		I	3	(3	вввввввввв
		mm	inch	mm	inch	MPa	psi	
1Y2LX-12-12C4462	3/4 - 16 UNF - LH	160.0		100.0		137.9	20,000	u
1Y2LX-16-12C4462	1 - 14 UNS - LH	181.0	7.13	119.4	4.70	138.0	20,000	

3/4" 12,500 psi High pressure wire hose 2640N-12V91

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	3,800 m / 12,467 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2640N-12V91

C		0	\supset	(3	ľ		5	Ŋ		Ø	Coll	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
19.8	3/4	33.2	1.310	86.5	12,500	345.0	50,000	350	13.8	2.16	1.45	12	1,740	4.0

Type M female swivel

#	<u>^^^^^</u>	1	4	E	3	$\langle \mathbf{H} \rangle$	(3		_
		mm	inch	mm	inch	mm	MPa	psi		
1AYJX-16-12C	1 5/16 - 12 UNF	108.0	4.25	40.6	1.60	38	103.5	15,000	∽н	

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Medium pressure tube nipple

#	<u>^^^^^</u>	,	4	E	В		2	B-B-A-	
		mm	inch	mm	inch	MPa	psi		
1Y2JX-16-12C	1 - 14 UNS - LH	182.2	7.17	100.0	3.93	138.0	20,000		

1" 4,060 psi High pressure wire hose 2390N-16V91

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based hulds.
MAX. LENGTH	5,000 m / 16,404 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2390N-16V91

C	\mathbf{D}	(\supset	\langle	3		<u>E</u>	5	Ð	ر ال	с Ю	Colla pres	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
25.2	1	35	1.380	28	4,060	112.0	16,240	280	11.0	1.17	0.79	3.9	566	4.0

#			4	E	3	$\langle \mathbf{H} \rangle$	(3		
		mm	inch	mm	inch	mm	MPa	psi		
1069X-16-16C	1 5/16 - 12 UNF	102.5	4.04	47.5	1.87	41	34.5	5,000	CH CH	

BSP female swivel (60° cone)

#	<u></u>		Α		В		(3	
		mm	inch	mm	inch	mm	MPa	psi	
1929X-16-16C	G 1	93.5	3.68	40.5	1.59	41	34.5	5,000	-t _H

Material: AISI 316 / 316Ti

	_ A	_
н в —	н ^^	1
н		I
		J
- 140		

1" 8,120 psi High pressure wire hose 2440N-16V91

-
0

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
	-40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	4,000 m / 13,123 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440N-16V91

C	\mathbf{D}			2			\mathcal{A}				Collapse pressure		DF	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
25.2	1	37.2	1.460	56	8,120	225.0	32,625	300	11.8	2	1.33	6	870	4.0

JIC female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>		4	E	3	$\langle \mathbf{H} \rangle$	(3	
		mm	inch	mm	inch	mm	MPa	psi	
106LX-16-16C4462	1 5/16 - 12 UNF	77.0	3.03	25.5	1.00	41	34.5	5,000	

Medium pressure tube nipple

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>		4	В		\bigcirc		ав
		mm	inch	mm	inch	MPa	psi	
1Y2LX-16-16C4462	1 - 14 UNS - LH	181.0	7.13	127.0	5.00	138.0	20,000	

Metric female swivel heavy series with O-ring

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>		ч		3	$\langle \mathbf{H} \rangle$	(3	
		mm	inch	mm	inch	mm	MPa	psi	
1C9LX-30-16C4462	M42x2	99.0	3.90	45.0	1.77	50	90.0	13,050	K H

1" 10,000 psi High pressure wire hose 2440N-16V91-10K

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids. -40°F up to +212°F, max. 158°F for water or methanol based fluids.
MAX. LENGTH	4,000 m / 13,123 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440N-16V91-10K

(o		\supset	(<u>с</u>				\mathcal{A}				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
25.2	1	37.2	1.460	69	10,000	225.0	32,625	300	11.8	2	1.34	6	870	33.0

JIC female swivel

Material: Special Stainless Steel Materials

Material: Special Stainless Steel Materials

#	A		4	E	3	$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
106LX-16-16C4462	1 5/16 - 12 UNF	77.0	3.03	25.5	1.00	41	34.5	5,000	

Medium pressure tube nipple

#	<u></u>	A		I	3	(3	вА В1
		mm	inch	mm	inch	MPa	psi	
1Y2LX-16-16C4462	1 - 14 UNS - LH	181.0	7.13	127.0	5.00	138.0	20,000	u

Metric female swivel heavy series with O-ring

#	<u>^^^^^</u>		A		В		$\langle \mathbf{H} \rangle$ (-
		mm	inch	mm	inch	mm	MPa	psi		
1C9LX-30-16C4462	M42x2	99.0	3.90	45.0	1.77	50	90.0	13,050	CZZCH H	

HIGH PRESSURE WIRE HOSES CHEMJEC

1/4" 6,250 psi High pressure **ChemJec** hose 2240M-04V38

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +125°C -40°F up to +257°F
	For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	3,200 m / 10,499 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2240M-04V38

С

(0	0	\supset	\bigcirc				\mathcal{A}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.5	1/4	11.6	0.457	43	6,250	172.5	25,000	70	2.8	0.17	0.11	10.5	1,523	4.0

JIC female swivel

#	<u>^^^^^</u>		4	E	3	$\langle \mathbf{H} \rangle$	\bigcirc	
		mm	inch	mm	inch	mm	MPa	psi
106RX-4-04C	7/16 - 20 UNF	52.0	2.05	23.0	0.91	17	43.0	6,250
106RX-6-04C	9/16 - 18 UNF	53.5	2.11	24.5	0.96	19	43.0	6,250

BSP female swivel (60° cone)

$\langle \mathbf{H} \rangle$ в Α mm inch mm inch mm MPa psi 192RX-4-04C G 1/4 50.5 1.99 22.0 0.87 17 43.0 6,250

Material: AISI 316 / 316Ti

1/4" 10,000 psi High pressure ChemJec hose 2340M-04V38

С

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +100°C
	-40"+ up to +212"+ For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	5,000 m / 16,404 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2340M-04V38

C	\mathbf{D}	0	\supset	\bigcirc				\mathcal{A}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	12.5	0.490	69	10,000	276.0	40,000	70	2.8	0.23	0.15	20.5	2,973	4.0

JIC female swivel

#	<u>~~~~~</u>	Α	В	$\langle \mathbf{H} \rangle$	(2	Ē
		mm	mm	mm	MPa	psi	
1068X-4-04C	7/16 - 20 UNF	57.0	26.0	19	69.0	10,000	CH CH
1068X-6-04C	9/16 - 18 UNF	55.0	24.0	19	103.5	15,000	

BSP female swivel (60° cone)

#	<u>^^^^</u>	A B		$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	mm	mm	MPa	psi	
1928X-4-04C	G 1/4	56.0	25.0	19	80.0	11,600	

Type M female swivel

#	<u></u>	ļ	Α		В		Ø		
		mm	inch	mm	inch	mm	MPa	psi	ŧ
1AY8X-6-04C	9/16 - 18 UNF	66.0	2.6	33.0	1.30	19	103.5	15,000	

Medium pressure tube nipple

#			\	В		\bigcirc		BA
		mm	inch	mm	inch	MPa	psi	
1Y28X-6-04C	3/8 - 24 UNF - LH	120.0	4.72	87.0	3.43	138.0	20,000	. u

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

1000	
1444 M	
	ŀ
<u> </u>	
\	

	A
-в	- 1
	1 I
	II
	1

1/4" 10,000 psi High pressure **ChemJec** hose 2380M-04V38

С

CONSTRUCTION	Core tube
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +125°C
	-40°F up to +257°F For higher temperature requirements please contact Polyflex Division
	To higher temperature requirements please contact rolynex Division
MAX. LENGTH	3,000 m / 9,843 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2380M-04V38

C		(\supset	\langle	3			5	Ð	لع ح	9	Colla	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	13.4	0.530	69	10,000	276.0	40,000	230	9.1	0.27	0.18	40	5,800	4.0

JIC female swivel

#		Α	в	$\langle \mathbf{H} \rangle$	\bigcirc	
		mm	mm	mm	MPa	psi
1068X-4-04C	7/16 - 20 UNF	57.0	26.0	19	69.0	10,000
1068X-6-04C	9/16 - 18 UNF	55.0	24.0	19	103.5	15,000

BSP female swivel (60° cone)

#	<u></u>	A	В	$\langle \mathbf{J} \rangle$	(3
		mm	mm	mm	MPa	psi
1928X-4-04C	G 1/4	56.0	25.0	19	80.0	11,600

Type M female swivel

#		4	N Contraction	E	3	$\langle \mathbf{J} \rangle$	\bigcirc	
		mm	inch	mm	inch	mm	MPa	psi
1AY8X-6-04C	9/16 - 18 UNF	66.0	2.6	33.0	1.30	19	103.5	15,000

Medium pressure tube nipple

#		,	A	I	в		в—	
		mm	inch	mm	inch	MPa	psi	
1Y28X-6-04C	3/8 - 24 UNF - LH	120.0	4.72	87.0	3.43	138.0	20,000	

Material: AISI 316 / 316Ti

A
B
•_H

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

~,

в	A

-Parker

1/4" 12,500 psi High pressure **ChemJec** hose 2440M-04V38

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire Cover
TEMPERATURE RANGE	-40°C up to +110°C -40°F up to +230°F For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	3,750 m / 12,303 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440M-04V38

C	\mathbf{D}	(\supset	(3	1	¥. ,S 🖬		6	Collapse pressure		DF		
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.5	1/4	13.1	0.520	86.5	12,500	345.0	50,000	150	5.9	0.31	0.21	31.8	4,495	4.0

IIC female swivel Material: AISI 316 / 316Ti										
#	<u>^^^^^</u>	A	A		$\langle \mathbf{H} \rangle$		\bigcirc			
			n	mm	mm	М	MPa			
1068X-6-04C	9/16 - 18 UNF	55	.0	24.0	19	10	3.5	15,000	<u>с</u> н	
Type M female swive	I					Materia	al: AISI 31	16 / 316Ti		
#	<u>^^^^^</u>	A	Α		в (ј)		\bigcirc			
		mm	inch	mm	inch	mm	MPa	psi		
1AY8X-6-04C	9/16 - 18 UNF	66.0	2.6	33.0	1.30	19	103.5	15,000	λ.,	

Medium pressure tube nipple

#	<u>^^^^</u>		4		3	(3	B B
		mm	inch	mm	inch	MPa	psi	
1Y28X-6-04C	3/8 - 24 UNF - LH	120.0	4.72	87.0	3.43	138.0	20,000	I

1/4" 15,000 psi High pressure **ChemJec** hose 2448M-04V38

С

CONSTRUCTION	Core tube
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +125°C
	-40°F up to +257°F
	For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	2,750 m / 9,022 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2448M-04V38

C	D	0	\supset	\langle	3	Ľ	ß	5	Ð) Dis	C Ø	Coll pres	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.5	1/4	13.7	0.540	103.5	15,000	414.0	60,000	150	5.9	0.38	0.26	45.1	6,540	4.0

Type M female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>		A		В		\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	F
1AYUX-6-04C	9/16 - 18 UNF	86.0	3.39	34.0	1.34	19	103.5	15,000	∼н

Medium pressure tube nipple

#	<u></u>	А		I	В	(3	вввввввввв
		mm	inch	mm	inch	MPa	psi	
1Y2UX-6-04C	3/8 - 24 UNF - LH	131.5	5.18	63.5	2.50	138.0	20,000	· · · · ·

Material: AISI 316 / 316Ti

5/16" 8,700 psi High pressure *ChemJec* hose 2380M-05V38

CONSTRUCTION	Core tube
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +125°C
	-40°F up to +257°F
	For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	2,500 m / 8,202 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2380M-05V38

(\mathbf{D}	0	\supset	\langle	2			5	Ð		с Ш	Coll	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
8.3	5/16	15.8	0.620	60	8,700	240.0	34,800	90	3.5	0.35	0.24	16.7	2,421	4.0

JIC female swivel

#		1	4	E	3	$\langle \mathbf{H} \rangle$	(3	
		mm	inch	mm	inch	mm	MPa	psi	
106LX-6-05C	9/16 - 18 UNF	78.0	3.07	33.0	1.30	19	69.0	10,000	
BSP female swivel (6	0° cone)					Materia	al: AISI 31	6 / 316Ti	

#	<u>^^^^^</u>	Α	В	$\langle \mathbf{J} \rangle$	(3
		mm	mm	mm	MPa	psi
192LX-6-05C	G 3/8	69.0	25.0	27	150.0	21,750

Type M female swive	I			1	Material: AIS	I 316 / 316Ti	
#		A	В	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	mm	mm	MPa	psi	
1AYLX-8-05C	3/4 - 16 UNF	70.0	31.0	27	150.0	21,750	

С

5/16" 10,000 psi High pressure ChemJec hose 2440M-05V38

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +125°C
	For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	4,000 m / 13,123 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440M-05V38

C	\mathbf{D}	(\supset	\langle	3			5	Ð	لع ح	9	Colla	apse sure	DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
8.3	5/16	16.2	0.637	69	10,000	276.0	40,000	175	6.9	0.49	0.33	26	3,771	4.0

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

JIC female swivel

#	<u>^^^^^</u>		Α		3	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
106LX-6-05C	9/16 - 18 UNF	78.0	3.07	33.0	1.30		69.0	10,000	

BSP female swivel (60° cone)

#	<u></u>	A	в	$\langle \mathbf{J} \rangle$	(3
		mm	mm	mm	MPa	psi
192LX-6-05C	G 3/8	69.0	25.0	27	150.0	21,750

Type M female swivel

Type M female swive	I			I	Material: AIS	I 316 / 316Ti	
#	<u>^^^^^</u>	Α	в	$\langle \mathbf{J} \rangle$	(3	
		mm	mm	mm	MPa	psi	
1AYLX-8-05C	3/4 - 16 UNF	70.0	31.0	27	150.0	21,750	

5/16" 15,000 psi High pressure **ChemJec** hose 2448M-05V38

С

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	 -40°C up to +100°C -40°F up to +212°F For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	2,500 m / 8,202 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2448M-05V38

(0	(\supset	\langle	3			A				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
8.5	5/16	16.2	0.640	103.5	15,000	414.0	60,000	175	6.9	0.53	0.36	32.6	4,727	4.0

Medium pressure tube nipple

#	<u>^^^^^</u>	А		В		(2	БВ	
		mm	inch	mm	inch	MPa	psi		
1Y2UX-6-05-INC625	3/8 - 24 UNF - LH	125.4	4.94	63.5	2.50	138.0	20,000	u	

3/8" 6,250 psi High pressure ChemJec hose 2370M-06V38

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire, synthetic fibre
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +125°C
	-40°F up to +257°F
	For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	2,200 m / 7,218 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2370M-06V38

C		0	\supset	\langle	2	-×		\mathcal{A}_{\bullet}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
9.9	3/8	16.5	0.650	43	6,250	172.5	25,000	120	4.7	0.33	0.22	15	2,175	4.0

JIC female swivel

#	<u>^^^^^</u>	A		I	В	$\langle \mathbf{H} \rangle$	(Ē	
		mm	inch	mm	inch	mm	MPa	psi	
106RX-6-06C	9/16 - 18 UNF	58.0	2.28	28.0	1.10	19	43.0	6,250	

BSP female swivel (60° cone)

#			A		В		\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
192RX-6-06C	G 3/8	55.0	2.17	25.0	0.98	22	43.0	6,250	

Material: AISI 316 / 316Ti

•	A	
<u> </u>		
┝──┟	1	
-H	•	

3/8" 10,000 psi High pressure **ChemJec** hose 2440M-06V38

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire Cover
TEMPERATURE RANGE	 -40°C up to +110°C -40°F up to +230°F For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	2,600 m / 8,530 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440M-06V38

C	D	(\supset	\langle	\bigcirc				\mathcal{A}				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
9.9	3/8	19.5	0.770	69	10,000	276.0	40,000	190	7.5	0.73	0.49	30	4,350	4.0

JIC female swivel

Material: Special Stainless Steel Materials

#	<u>~~~~~</u>	Α		E	3	$\langle \mathbf{J} \rangle$ (3	
		mm	inch	mm	inch	mm	MPa	psi	
106LX-6-06C-M-Subsea	9/16 - 18 UNF	87.0	3.43	34.0	1.34	19	69.0	10,000	ς,
106LX-8-06C-M-Subsea	3/4 - 16 UNF	87.0	3.43	34.0	1.34	24	69.0	10,000	

Medium pressure tube nipple

#	<u>~~~~~</u>		4	E	3	(2				
		mm	inch	mm	inch	MPa	psi				
1Y2LX-9-06C-M-SUBSEA	9/16 - 18 UNF - LH	158.0	6.22	105.0	4.13	138.0	20,000				

3/8" 15,000 psi High pressure **ChemJec** hose 2448M-06V38

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C
	-40°F up to +212°F
	For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	4,000 m / 13,123 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2448M-06V38

C	\mathbf{D}			2			\mathcal{R}				Collapse pressure		DF	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
10.2	3/8	20.1	0.800	103.5	15,000	414.0	60,000	200	7.9	0.83	0.56	35.3	5,119	4.0

Type M female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>		A		3	$\langle \mathbf{J} \rangle$	(3	
		mm	inch	mm	inch	mm	MPa	psi	F
1AYUX-8-06C	3/4 - 16 UNF	93.5	3.68	38.5	1.52	27	103.5	15,000	∼н

Medium pressure tube nipple

#	<u>^^^^</u>		4	I	В	(3	в в
		mm	inch	mm	inch	MPa	psi	
1Y2UX-9-06C	9/16 - 18 UNF - LH	151.0	5.94	72.0	2.83	138.0	20,000	· · · · · ·

1/2" 10,000 psi High pressure **ChemJec** hose 2440M-08V38

С

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire Cover
TEMPERATURE RANGE	-40°C up to +100°C -40°F up to +212°F For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	4,500 m / 14,764 ft
	(for longer length requirements please contact Parker Hannitin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440M-08V38

C	0	$\bigcirc \oslash$		3			R,				Collapse pressure		DF	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.9	1/2	22.7	0.890	69	10,000	276.0	40,000	200	7.9	0.94	0.63	25.2	3,654	4.0

JIC female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^</u>	<u>A</u>		В		$\langle \mathbf{J} \rangle$	(3	
		mm	inch	mm	inch	mm	MPa	psi	
106LX-8-08C-M-Subsea	3/4 - 16 UNF	100.0	3.94	35.0	1.38	24	69.0	10,000	Σ,

Medium pressure tube nipple

#			A		В		3			
		mm	inch	mm	inch	MPa	psi			
1Y2LX-12-08C-M-SUBSEA	3/4 - 16 UNF - LH	184.2	7.25	119.4	4.70	138.0	20,000	u		

3/4" 5,000 psi High pressure ChemJec hose 2390M-12V38

С

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +125°C -40°F up to +257°F For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	2,300 m / 7,546 ft
	(tor longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2390M-12V38

C	D					R,				Collapse pressure		DF		
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
20	3/4	29	1.140	34.5	5,000	138.0	20,000	250	9.8	0.9	0.6	7.5	1,088	4.0

JIC female swivel

#	<u></u>	A		1	В		⟨H⟩ (
		mm	inch	mm	inch	mm	MPa	psi	
1069X-12-12C	1 1/16 - 12 UNF	96.0	3.78	43.0	1.69	36	34.5	5,000	

BSP female swivel (60° cone)

#		A		В		$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
1929X-12-12C	G 3/4	77.0	3.03	26.0	1.02	32	34.5	5,000	

C-36

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

<u>م</u>	A	1
B		ļ
$ \longrightarrow $		I
		I
		I
		J
•-н		

Catalogue 4465

3/4" 10,000 psi High pressure **ChemJec** hose 2440M-12V38

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +110°C -40°F up to +230°F
	For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	2,300 m / 7,546 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2440M-12V38

C	\mathbf{D}	0	\supset	(3			A,				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
19.8	3/4	30.2	1.190	69	10,000	250.0	36,250	250	9.8	1.46	0.98	11	1,595	36.0

JIC female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>		А		3	$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
106LX-16-12C4462	1 5/16 - 12 UNF	99.0	3.9	43.0	1.69	41	69.0	10,000	

Medium pressure tube nipple

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>	Α			В	(F	
		mm	inch	mm	inch	MPa	psi	
1Y2LX-12-12C4462	3/4 - 16 UNF - LH	160.0		100.0		137.9	20,000	
1Y2LX-16-12C4462	1 - 14 UNS - LH	181.0	7.13	119.4	4.70	138.0	20,000	

Type M female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^</u>	A		E	3	$\langle \mathbf{H} \rangle$	(3	
		mm	inch	mm	inch	mm	MPa	psi	
1AYLX-16-12C4462	1 5/16 - 12 UNF	92.0	3.62	38.0	1.49	41	103.5	15,000	∼н

С

1" 4,060 psi High pressure ChemJec hose 2390M-16V38

С

CONSTRUCTION	Core tube
TEMPERATURE RANGE	-40°C up to +100°C
	-40°F up to +212°F
	For higher temperature requirements please contact Polytiex Division
MAX. LENGTH	1,500 m / 4,921 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Mieets or exceeds performance requirements of ISO 13628-5 / API 17E

2390M-16V38

(\mathbf{D}	0	\supset	\langle	3				A				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
25.3	1	35	1.380	28	4,000	112.0	16,000	280	11.0	1.19	0.79	3.5	505	4.0

JIC female swivel

#	<u></u>	Α			3	$\langle \mathbf{H} \rangle$	(3	
		mm	inch	mm	inch	mm	MPa	psi	
1069X-16-16C	1 5/16 - 12 UNF	102.5	4.04	47.5	1.87	41	34.5	5,000	

BSP female swivel (60° cone)

#		A		В		$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
1929X-16-16C	G 1	93.5	3.68	40.5	1.59	41	34.5	5,000	

Material: AISI 316 / 316Ti

вА	1
FH.	1
	I
	'

1" 5,000 psi High pressure **ChemJec** hose 2440M-16V38-5K

С

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +125°C -40°F up to +257°F For higher temperature requirements please contact Polyflex Division
MAX. LENGTH	2,000 m / 6,562 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E
SPECIFICATION	mode of exceede performance requirements of red red to 77 a 1 m 2

2440M-16V38-5K

C	D	(\supset	\langle	2			A				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
25.2	1	37.2	1.460	34.5	5,000	225.0	32,625	300	11.8	2.05	1.36	6.5	943	65.0

JIC female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^</u>		А		В		\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
106LX-16-16C4462	1 5/16 - 12 UNF	77.0	3.03	25.5	1.00	41	34.5	5,000	

Medium pressure tube nipple

Material: Special Stainless Steel Materials

#	<u>^^^^</u>	1	4	E	3	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1Y2LX-16-16C4462 1	- 14 UNS - LH	181.0	7.13	127.0	5.00	138.0	20,000	

Metric female swivel heavy series with O-ring

#	<u>^^^^</u>		4	E	3	H	(3		
		mm	inch	mm	inch	mm	MPa	psi		
1C9LX-30-16C4462	M42x2	99.0	3.90	45.0	1.77	50	90.0	13,050	H	

20,000PSI WIRE HOSE NAUTILUS20

1/4" 20k Subsea Umbilical Hose 2448P-04V30

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +125°C -40°F up to +257°F
MAX. LENGTH	3,500 m / 11,500 ft (for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2448P-04V30

C	\mathbf{D}	(\supset	(3			5	Ð			Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	13	0.512	138	20,000	414.0	60,000	150	5.2	0,33	0.22	60	8,700	3.0

Type M female swivel Material: Special Stainless Steel Materials # $\langle \mathbf{J} \rangle$ Α в mm inch mm inch mm MPa psi 1AYUX-6-04C 9/16 - 18 UNF 86.0 3.39 34.0 1.34 19 103.5 15.000 Medium pressure tube nipple Material: Special Stainless Steel Materials

#	<u>^^^^</u>		4	В		(2	БВ
		mm	inch	mm	inch	MPa	psi	
1Y2UX-6-04C	3/8 - 24 UNF - LH	131.5	5.18	63.5	2.50	138.0	20,000	

1/2" 20k Subsea Umbilical Hose 2448P-08V30

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +125°C
	-40°F up to +257°F
MAX. LENGTH	3,500 m / 11,500 ft
	(for longer length requirements please contact Parker Hannifin)
SPECIFICATION	Meets or exceeds performance requirements of ISO 13628-5 / API 17E

2448P-08V30

(• • • • •		3			R				Collapse pressure			
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
13	1/2	23.2	0.911	138	20,000	414.0	60,000	300	11.8	1,15	0.77	50,5	7,320

Type M female swivel

Material: Special Stainless Steel Materials

#	<u>^^^^^</u>		۱.	I	3	$\langle \mathbf{J} \rangle$	(3	
		mm	inch	mm	inch	mm	MPa	psi	
1AY5X-11-08C-M-Subsea	1 - 12 UNF	111.0	4.37	56.0	2.20	32	103.5	15,000	~н

Medium pressure tube nipple

#	<u>^^^^^</u>	A		В		\bigcirc		нвяввввввв
		mm	inch	mm	inch	MPa	psi	
1Y25X-9-08C-M-Subsea	9/16 - 18 UNF - LH	164.2	6.46	72.0	2.83	138.0	20,000	u
1Y25X-12-08C-M-Subsea	3/4 - 16 UNF - LH	174.2	6.86	84.0	3.31	138.0	20,000	
D

CHAPTER D

SUBSEA BOP HOSES

igh pressure subsea BOP hoses	D-4
-------------------------------	-----

D

SUBSEA BOP HOSES

polyflex BOP hoses are in use since many years. Both on subsea BOPs for hydraulic applications and as hot-lines in long continuous lengths up to 4,200m for MUX system applications.

Crimp your own assembly: BOP hose 2390N and suitable fittings are available as bulk hose and single components. Hose and E3 / E4 fitting serie can easily be crimped with the Parker ParKrimp system – also on site on rigs or vessels.

APPLICATION

- · Hydraulic lines on Subsea BOPs
- · Hot lines from vessel or rig to Subsea BOP
- General hydraulic applications

FEATURES

- Suitable for Parker ParKrimp
 System
- Very compact hose construction
- Long contiuous lengths up to 4,200 m without splicing
- Seamless Polyamide core tube of high chemical resistance
- Seawater resistant cover material in various colors
- Improved collapse resistance

D

- · Fast and easy hose assembly manufacturing
- Saves space on drum and vessel
- Suitable for deep sea applications
- One continuous line down to sea bed without splices or other connections
- · Suitable for most hydraulic fluids

HIGH PRESSURE SUBSEA BOP HOSES

1/4" 7,105 psi Subsea BOP hose 2390N-04Vxy

D		
	. 1	
-		

CONSTRUCTION	Core tube Polyamide
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
MAX. LENGTH	3,200 m / 10,499 ft
CERTIFICATES	ABS Product Design Assessment (PDA) Certificate 22-2226082-PDA

2390N-04Vxy

C	\mathbf{D}	(\supset	(2	2			A,				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
6.4	1/4	13.4	0.530	49	7,105	196.0	28,420	70	2.8	0.25	0.17	13.9	2,015	4.0

JIC female swivel

#	<u>^^^^</u>	1	A		3	$\langle \mathbf{H} \rangle$	$\langle \mathbf{J} \rangle$	(
		mm	inch	mm	inch	inch	inch	MPa	psi	ĒĤ
106E3-4-4C	7/16 - 20 UNF	62.6	2.46	37.0	1.46	5/8"	5/8"	34.5	5,000	
106E3-6-4C	9/16 - 18 UNF	64.8	2.55	39.0	1.54	5/8"	3/4"	34.5	5,000	

.IIC female swivel 90°

$\langle \mathbf{J} \rangle$ $\overline{}$ в Α mm inch mm inch inch MPa psi 5/8" 139E3-4-4C 7/16 - 20 UNF 61.2 2.41 35.0 1.38 34.5 5,000 139E3-6-4C 9/16 - 18 UNF 61.2 2.41 35.0 1.38 3/4" 34.5 5,000

Material: AISI 316 / 316Ti

B	1

3/8" 6,450 psi Subsea BOP hose 2390N-06Vxy

D

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
MAX. LENGTH	3,500 m / 11,483 ft

63.5

G 3/8

2.5

2390N-06Vxy

C	\mathbf{D}	0	\supset	(2				\mathcal{A}		۲ ۵	Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
9.8	3/8	18.1	0.710	44.5	6,450	178.0	25,800	120	4.7	0.41	0.28	15	2,175	4.0

JIC female swivel

1929X-6-06C

Material: AISI 316 / 316Ti

69.0

10,000

#	<u>^^^^</u>	A		В		$\langle \mathbf{H} \rangle$	\bigcirc		
		mm inch		mm	inch	mm	MPa	psi	
1069X-8-06C	3/4 - 16 UNF	74.0	2.91	31.0	1.22	24	69.0	10,000	
BSP female swivel (6					Material: AISI 316 / 316				
ш			A		в		\bigcirc		I=
#	<u></u>	4	•	E	3	$\langle \mathbf{H} \rangle$	()	

24.5

0.96

22

1/2" 6,020 psi Subsea BOP hose 2390N-08Vxy

CONSTRUCTION	Core tube
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
MAX. LENGTH	5,600 m / 18,373 ft

CERTIFICATES

ABS Product Design Assessment (PDA) Certificate 22-2226082-PDA

2390N-08Vxy

C		\odot \odot			A Z			ر ها	3	Collapse pressure		DF		
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
12.9	1/2	21.1	0.833	41.5	6,020	166.0	24,080	150	5.9	0.57	0.38	7.8	1,131	4.0

JIC female swivel

#	<u>^^^^</u>	A		в		$\langle \mathbf{H} \rangle$	⟨H⟩⟨J⟩		2	
		mm	inch	mm	inch	inch	inch	MPa	psi	ĘŧĮ.
106E3-8-8C	3/4 - 16 UNF	90.3	3.56	47.0	1.85	15/16"	15/16"	34.5	5,000	⊢ н

JIC female swivel 90°

#		A		E	3	$\langle \mathbf{J} \rangle$	(<u>S</u>	
		mm	inch	mm	inch	inch	MPa	psi	
139E3-8-8C	3/4 - 16 UNF	104.5	4.11	62.0	2.44	15/16"	34.5	5,000	

Dual Seal Straight

#		A	E	3	\bigcirc		
	mm inch		mm	inch	MPa	psi	
19GE3-8-8C	82.9 3.26		40.0	1.57	34.5 5,000		

Dual Seal 90°

#	4	A	E	3	\bigcirc		
	mm inch		mm	inch	MPa	psi	-
19WE3-8-8C	104.5	4.11	62.0	2.44	34.5	5,000	1
19WE3-16-8C	104.5	4.11	62.0	2.44	34.5	5,000	

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

3/4" 5,075 psi Subsea BOP hose 2390N-12Vxy

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
MAX. LENGTH	3,200 m / 10,500 ft
CERTIFICATES	ABS Product Design Assessment (PDA) Certificate 22-2226082-PDA

2390N-12Vxy

C	\mathbf{D}	(\supset	(3				\mathcal{A}				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
19.6	3/4	28.9	1.140	35	5,075	140.0	20,300	300	11.8	0.9	0.61	5.3	768	4.0

JIC female swivel

#		A		I	3	$\langle \mathbf{H} \rangle$	$\langle \mathbf{H} \rangle$		
		mm	inch	mm	inch	mm	MPa	psi	
1069X-12-12C	1 1/16 - 12 UNF	96.0	3.78	43.0	1.69	36	34.5	5,000	

BSP female swivel (60° cone)

#		A		В		$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	
1929X-12-12C	G 3/4	77.0	3.03	26.0	1.02	32	34.5	5,000	

Material: AISI 316 / 316Ti

в — А	
PH-	

C CC

D

		~
в-		
<u>ا</u>		
$\rightarrow \rightarrow \phi$	-	
J		
	4	

1" 4,060 psi Subsea BOP hose 2390N-16Vxy

CONSTRUCTION	Core tube Polyamide
	Pressure reinforcement High strength wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
MAX, LENGTH	5,000 m / 16,404 ft

MAX. LENGTH CERTIFICATES

ABS Product Design Assessment (PDA) Certificate 22-2226082-PDA

2390N-16Vxy

D

((\supset	\bigcirc				A,				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
25.2	1	34.9	1.374	28	4,060	112.0	16,240	280	11.0	1.17	0.78	3.9	565	4.0

JIC female swivel

#	<u></u>	А		В		$\langle \mathbf{H} \rangle$	$\langle H \rangle \langle J \rangle$		2		
		mm	inch	mm	inch	mm	mm	MPa	psi		
106E4-16-16C	1 5/16 - 12 UN	121.0	4.76	60.0	2.36	1 1/2"	1 5/8"	34.5	5,000		

JIC female swivel 90°

#	<u>^^^^^</u>	А		E	3	$\langle \mathbf{J} \rangle$	()
		mm	inch	mm	inch	inch	MPa	psi
139E4-16-16C-411	1 5/16 - 12 UN	144.6	5.69	84.0	3.31	1 5/8"	34.5	5,000

Dual Seal straight

#	1	4	E	3	\bigcirc		
	mm	inch	mm	inch	MPa	psi	
19GE4-16-16C	110.6	4.35	50.8	2.00	34.5	5,000	
19GE4-24-16C	113.8 4.48		54.0	54.0 2.13		5,000	

Dual Seal 90°

#		A	E	3	\bigcirc		
	mm	inch	mm	inch	MPa	psi	
19WE4-16-16C	144.5	5.69	84.0	3.31	34.5	5,000	
19WE4-24-16C	144.5	5.69	84.0	3.31	34.5	5,000	

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

вА
PI -

		TW		_
	R			
	111	T.H	_	
	が自	1	() () () () () () () () () ()	
- 1		1		

5,000	[
5,000		

1" 5,510 psi Subsea BOP hose 2380N-16Vxy

CONSTRUCTION	Core tube Polyamide Pressure reinforcement High strength wire
	Cover
TEMPERATURE RANGE	-40°C up to +100°C, max. 70°C for water or methanol based fluids.
MAX. LENGTH	4,000 m / 13,123 ft
CERTIFICATES	ABS Product Design Assessment (PDA) Certificate 22-2226082-PDA

2380N-16Vxy

C	\mathbf{D}	0	\supset	\langle	2			\mathcal{R}_{\bullet}				Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
25.2	1	36.8	1.450	34,5	5,000	138.0	20,000	290	11.4	1.49	1	4.8	696	4.0

JIC female swivel

#	<u>^^^^</u>	А		В		$\langle \mathbf{H} \rangle$	$\langle \mathbf{J} \rangle$	(3	
		mm	inch	mm	inch	inch	inch	MPa	psi	É
106E4-16-16C	1 5/16 - 12 UN	121.0	4.76	60.0	2.36	1 1/2"	1 5/8"	34.5	5,000	~

JIC female swivel 90°

#	<u>^^^^^</u>	А		E	3	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	inch	mm	inch	inch	MPa	psi	
139E4-16-16C-411	1 5/16 - 12 UN	144.6	5.69	84.0	3.31	1 5/8"	34.5	5,000	

Dual Seal Straight

#	Α			3	(Ē	
	mm	inch	mm	inch	MPa	psi	· · · · ·
19GE4-16-16C	110.6	4.35	50.8	2.00	34.5	5,000	
19GE4-24-16C	113.8	4.48	54.0	2.13	34.5	5,000	_

Dual Seal 90°

#	A		E	3	(
	mm	inch	mm	inch	MPa	psi	147,
19WE4-16-16C	144.5	5.69	84.0	3.31	34.5	5,000	· · · ·
19WE4-24-16C	144.5	5.69	84.0	3.31	34.5	5,000	

D

Material: AISI 316 / 316Ti

Material: AISI 316 / 316Ti

1.5" 5,000 psi Subsea BOP hose 2340N-24V10

D

Core tube Pressure reinforcement	.Polyamide .High strength wire
Cover	.Polyurethane .V10: black; V12: blue; V13: green; V16: yellow

TEMPERATURE RANGE -40°C up to +100°C, max. 70°C for water or methanol based fluids.

2340N-24V10

C	\mathbf{D}	0	\supset	\langle	2			5	\mathcal{A}		C ۵	Collapse pressure		DF
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
38	1.5	55.5	2.185	34.5	5,000	138.0	20,000	450	17.7	3.5	2.35	3.7	536	4.0

JIC female swivel

#	<u>^^^^</u>	A		В		$\langle \mathbf{H} \rangle$	$\langle \mathbf{J} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	mm	MPa	psi	
1068X-24-24C	1 7/8-12 UN	173.0	6.817	89.2	3.51	65	55	345.0	5,000	Σ,

CHAPTER E

HYDROSTATIC TESTING HOSE

Ultra high pressure hoses and fittings .		E-2
--	--	-----

ULTRA HIGH PRESSURE HOSES AND FITTINGS

polyflex offers a large number of ultra high pressure hoses which are suitable for hydrostatic testing applications. With working pressures up to 60,000psi and a size range from 1/8" up to 1 1/4" we offer customers the option to test equipment or well installations in an extremly wide pressure range. Please refer to catalogue 4462 for further details.

CHAPTER F

THE **Black Eagle** HOSE FAMILY FOR WELL SERVICES

The Black Eagle hose family for well services.	. F-2
Construction	. F-4
Hose overview	. F-5
Hose specifications.	. F-6

THE BLACK EAGLE HOSE FAMILY FOR WELL SERVICES

The **Black Eagle** family is a range of multispiral, wire reinforced hoses specifically designed for the oil and gas market, covering applications in offshore projects and land operations.

For many years this range of hoses has enabled our customers to optimize well production by performing operations like acidizing, cementing, methanol injection or gas injection.

APPLICATION

Subsea and land based well operations like:

- Cementing operations acc. to API 7K FSL 0
- Acidizing
- General Fluid and Gas Injection
- Mud Circulation

FEATURES

- ColorGard™, an extra thick dual color Polyurethan sheath
- Long continuous lengths up to 1,500 m without splicing (depending on hose type)
- Superior chemical resistant core tube either seamless PA11 or fluoropolymer based
- Compact design smaller OD than flexible pipe
- Up to 30% weight reduction in comparision to R13 rubber hoses more than 70% in comparision to flexible pipe
- ID from 1 1/4" up to 3" working pressure from 3,000 psi (207 bar) up to 15,000 psi (1035 bar) – temperature range from -40°C up to 100°C
- Lower bend radius compared to composite hose

BENEFITS

Increased safety – superior abrasion resistance in combination with a visual indication for

damaged cover

- Less connections therefore less risk of leakage, less risk to workforce, and faster deployment
- · Long service life and less maintenance
- · Less effort for logistics due to increased hose capacity per reel
- Easier handling and faster installation
- · Comprehensive range of hoses to cover most applications
- · Easier handling and improved flexibility

CONSTRUCTION

Polyflex Black Eagle hoses are designed for oilfield applications. For each application different demands need to be considered regarding:

- Composition of fluids
- Temperatures and pressures
- Short term pressure fluctuations
- Static and dynamic loads
- Safety requirements and standards

THERMOPLASTIC CORE TUBE

To be able to cover these requirements the construction of Black Eagle hose has the following functionality: The essential requirement for a hose is to contain and transmit a fluid or gas. The core tube of a thermoplastic hose is therefore in direct contact with that medium. The selection of the core tube material depends on fluid compatibility, service temperature, and diffusion rate under operating conditions. The available materials are:

- Polyamide (PA11): It is used in high-performance applications for oil and gas, flexible pipes and control fluid umbilicals. It can operate within a wide range of working temperatures (-40°C up to +70°C), has a high dimensional stability and is low in density.
- Fluoropolymer designed for use in chemical injection systems at high temperature levels, the tubing shows low permeation rates and an excellent chemical resistance. Proven to handle methanol at 100°C and 15,000 psi working pressure.

Thermoplastic core tubes are manufactured with an extremly smooth and clean inner surface. This provides minimum flow resistance and minimum pressure drop in service.

SPIRALIZED WIRE REINFORCEMENT

Our reinforcement allows flexibility in service without compromising fluid transfer . Various layers of high tensile strength steel wires are used to achieve the best combination of pressure resistance, flexibility, and volumetric expansion.

The basic function of the cover is to protect the wire reinforcement from very demanding environment. This could be decomposive media like seawater or extreme abrasion of the cover.

COLORGARD™ COVER

ColorGard[™] is an extra thick dual layer Polyurethan sheath: a red inner layer and a black or golden outer layer. It offers both an abration resistant extra thick cover for long service life and acts as an additional safety feature. This concept is a visual early warning system for detection of excessive abrasion. This feature avoids possible injuries and reduction of downtime by anticipating failure.

#	0		\odot	\bigcirc		R			
Part number		Size		Max. working pressure	Min. burst pressure	Min. bend radius	Max. length	Weight	Collapse pressure
	size	inch	inch	psi	psi	inch	ft	lbs/ft	psi
	DN	mm	mm	MPa	MPa	mm	m	kg/m	MPa
004001 00140	-32	2	2.70	3,000	12,000	19.7	3,281	2.96	-
2240N-32V10	50	51	68.5	20.7	82.5	500	1000	4.40	-
004001 00140	-32	2	2.70	5,000	12,500	19.7	3,281	2.96	-
2240N-32V10	50	51	68.5	34.5	86.2	500	1000	4.40	-
044001 00040	-32	2	2.89	8,000	20'000	25.6	3,281	5.14	-
2449N-32V10	50	51	73.5	55.2	138	650	1000	7.65	-

Biack Eagle LIGHT

Black Eagle

	size	inch	inch	psi	psi	inch	ft	lbs/ft	psi
	DN	mm	mm	MPa	MPa	mm	m	kg/m	MPa
	-20	1 1/4	2.19	10,000	25,000	15.8	4,921	2.55	827
2448N-20V80	32	32.2	55.5	69.0	172.5	400	1500	3.80	5.7
064011 041/00	-24	1 1/2	2.78	10,000	33,350	19.7	3,281	4.84	950
2640N-24V80	40	38.0	70.5	69.0	230.0	500	1000	7.20	6.5
	-24	1 1/2	2.60	15,000	33,750	19.7	3,281	4.37	957
2640N-24V80-15K	40	38.0	66.0	103.5	233.0	500	1000	6.50	6.6
044014 001/00	-32	2	3.17	5,000	20,000	19.7	3,281	5.71	710
2448N-32V80	50	50.5	80.5	34.5	138.0	500	1000	8.50	4.9
050011 001/00	-32	2	3.33	10,000	25,000	31.5	3,281	6.32	826
2500N-32V00	50	50.5	84.5	69.0	172.5	800	1000	9.40	5.7
064011 001/00	-32	2	3.39	15,000	33,750	31.5	2,625	8.13	870
2040IN-32V00	50	50.5	86.0	103.5	233.0	800	800	12.10	6.0
004001 401/00	-48	3	4.49	5,000	12,500	40.0	1,148	7.73	-
2240IN-46¥60	78	75.0	114.0	34.5	86.2	1000	350	11.50	-
044001 401/00	-48	3	4.80	10,000	20,000	43.3	984	12.57	957
2440N-48V80	78	75.0	122.0	69.0	138.0	1100	300	18.70	6.6
064011 401/00	-48	3	5.12	15,000	33,750	47.2	820	18.48	1,160
2640N-48V80	78	75.0	130.0	103.5	233.0	1200	250	27.50	8.0

Golden Eagle

	size	inch	inch	psi	psi	inch	ft	lbs/ft	psi
	DN	mm	mm	MPa	MPa	mm	m	kg/m	MPa
	-24	1 1/2	2.78	10,000*	33,350	19.7	1,970	4.84	950
2640M-24V88	40	38.0	70.5	69.0*	230.0	500	600	7.20	6.5
044004 00/00	-32	2	3.23	5,000	20,000	19.7	1,970	5.71	710
2448M-32V88	50	51.0	82.0	34.5	138.0	500	600	8.50	4.9
050014 001/00	-32	2	3.33	10,000*	25,000	31.5	1,970	6.32	825
2580M-32V88	50	51.0	84.5	69.0*	172.5	800	600	9.40	5.7

HOSE SPECIFICATIONS

2" 3,000 psi **Black Eagle** Light 2240N-32V10

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +100°C
	-40°F up to +212°F
MAX. LENGTH	1,000 m / 3,281 ft

2240N-32V10

F

C	o		Max. working pressure		Te pres	Test pressure			Min. bend radius				Collapse pressure		
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
51	2	68.5	2.700	20.7	3,000	31.1	4,500	82.7	12,000	500	19.7	4.4	2.96	3.8	550

AVAILABLE STEEL AND STAINLESS STEEL FITTINGS*

1502 Hammerlug union	male		Material: Special Steel Materials							
#	<u>~~~~~</u>	A		В		(3			
		mm inch		mm	inch	MPa	psi			
1HES6-32-32-FLAT	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000			
1502 Hammerlug union	female			٨	Aaterial: Sp	ecial Steel	l Materials			
#	<u>^^^^</u>		4	E	3	(3			
		mm	inch	mm	inch	MPa	psi			
1HNS6-32-32	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000			
1502 Hammerlug union	male		Material:	Special Ste	el and Stai	nless Steel	l Materials			
1502 Hammerlug union #	male	,	Material: 3	Special Ste	el and Stai 3	nless Steel	l Materials			
1502 Hammerlug union #	male	mm	Material: S A inch	Special Ste E	el and Stai 3 inch	nless Steel MPa	Materials			
1502 Hammerlug union # 1HES6-32-32-FLAT-SC	male 4 1/8" - 3 ACME	mm 170.0	Material: 3	Special Ster E mm 76.0	el and Stai inch 2.99	MPa 103.5	psi 15,000			
1502 Hammerlug union # 1HES6-32-32-FLAT-SC 1502 Hammerlug union	male	mm 170.0	Material: 3 A inch 6.69 Material: 3	Special Ster mm 76.0 Special Ster	el and Stai inch 2.99 el and Stai	MPa 103.5	Materials psi 15,000 Materials			
1502 Hammerlug union # 1HES6-32-32-FLAT-SC 1502 Hammerlug union #	male 4 1/8" - 3 ACME female	mm 170.0	Material: 3 inch 6.69 Material: 3	Special Ste mm 76.0 Special Ste	el and Stai	MPa 103.5 nless Steel	Materials psi 15,000 Materials			
1502 Hammerlug union # 1HES6-32-32-FLAT-SC 1502 Hammerlug union #	male 4 1/8" - 3 ACME female	mm 170.0	Material: 3 inch 6.69 Material: 3 A inch	Special Ster	el and Stai inch 2.99 el and Stai inch	MPa 103.5 nless Steel	Materials psi 15,000 Materials psi			

* Fittings must not be used subsea. For subsea applications please use the products page F-7 et sqq. in this chapter.

2" 3,000 psi Black Eagle Light 2240N-32V10

AVAILABLE SUBSEA FITTINGS

1502 Hammerlug union	male		Material: Special Steel and Stainless Steel Materials								
#	<u>~~~~~</u>		A		в	(Z				
		mm	inch	mm	inch	MPa	psi				
1HES6-32-32-FLAT-SUBSEA	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000				
1502 Hammerlug union	female		Material: Special Steel and Stainless Steel Materials								
#	<u>^^^^</u>	ļ	\	I	3	(3				
		mm	inch	mm	inch	MPa	psi				
1HNS6-32-32-SUBSEA	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000				

2" 5,000 psi Black Eagle Light 2248N-32V10

CONSTRUCTION	Core tube
	Cover Extra thick TPU sheath Colour
TEMPERATURE RANGE	-40°C up to +100°C
	-40°F up to +212°F
MAX. LENGTH	1,000 m / 3,281 ft

2248N-32V10

	00		\supset	Max. working pressure		Te pres	Test pressure				Min. bend radius				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
51	2	68.5	2.700	34.5	5,000	51.8	7,500	86.2	12,500	500	19.7	4.4	2.96	3.8	550	

AVAILABLE STEEL AND STAINLESS STEEL FITTING*

1502 Hammerlug unio	n male	Material: Special Steel Materials						
#	<u></u>	1	4	I	В	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HES6-32-32-FLAT	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000	
1502 Hammerlug unio	n female			Material: Si	oecial Stee	l Materials		

1502 Hammerlug union female

Α в MPa mm inch mm inch psi 4 1/8" - 3 ACME 1HNS6-32-32 6.69 2.99 103.5 15,000 170.0 76.0

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	A	۱.	I	3	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HES6-32-32-FLAT-SC	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000	

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>		A	1	3	(2	
		mm	inch	mm	inch	MPa	psi	
1HNS6-32-32-SC	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000	

* Fittings must not be used subsea. For subsea applications please use the products page F-9 et sqq. in this chapter.

2" 5,000 psi Black Eagle Light 2248N-32V10

AVAILABLE SUBSEA FITTINGS

1502 Hammerlug union	male	N						
#	<u></u>		A	1	3	(3	
		mm	inch	mm	inch	MPa	psi	
1HES6-32-32-FLAT-SUBSEA	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000	and the second se
* Material Certificates avai	lable on request							

Material Certificates availa on request.

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>	A		I	3	(2	
		mm	inch	mm	inch	MPa	psi	
1HNS6-32-32-SUBSEA	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000	

2" 8,000 psi **Black Eagle** Light 2449N-32V10

2449N-32V10

(o		\bigcirc		-		\mathcal{A}				Collapse pressure		
mm	inch	mm	inch	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
51	2	73.5	2.890	55.2	8,000	138.0	20,000	650	25.6	7.65	5.14	4.9	710

AVAILABLE STEEL AND STAINLESS STEEL FITTING*

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	А		1	В	(3	
		mm	inch	mm	inch	MPa	psi	
1HES8-32-32-FLAT-SC	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000	

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	А		I	в	(2	
		mm	inch	mm	inch	MPa	psi	
1HNS8-32-32-SC	4 1/8" - 3 ACME	170.0	6.69	76.0	2.99	103.5	15,000	

* Fittings must not be used subsea.

1 1/4" 10,000 psi **Black Eagle** 2440N-20V80

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +100°C
MAX. LENGTH	1,500 m / 4,921 ft
CERTIFICATES	DNVGL Type Approval TAD00000CA (see chapter 4)

2440N-20V80

(o o		\supset	Max. working pressure		Test pressure				Min. bend radius				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
32.2	1 1/4	55.5	2.190	69	10,000	103.5	15,000	172.5	25,000	400	15.8	3.8	2.55	6	870

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	1	4	E	3	(
		mm	inch	mm	inch	MPa	psi	
1HELX-32-20C4462-FLAT	4 1/8" - 3 ACME	191.0	7.52	116.5	4.59	103.5	15,000	om fano

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>		4	В		(2	
		mm	inch	mm	inch	MPa	psi	
1HNLX-32-20C4462	4 1/8" - 3 ACME	175.7	6.92	101.2	3.98	103.5	15,000	

1 1/2" 10,000 psi **Black Eagle** 2640N-24V80

Pi	ressure reinforcement 6 layers of high tensile steel wire
C	over
TEMPERATURE RANGE -4	10°C up to +70°C
MAX. LENGTH 1,	000 m / 3,281 ft
CERTIFICATES DI	NVGL Type Approval TAD00000CA (see chapter 4)

C)	(\supset	Max. v pres	vorking ssure	Te pres	Test pressure		Min. bend radius				Collapse pressure		
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
38	1 1/2	70.5	2.780	69	10,000	103.5	15,000	230.0	33,350	500	19.7	7.2	4.84	6.5	950

Metric female swivel heavy series with O-ring

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	A		В			$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	n in	ch	mm	MPa	psi	
1C95X-38-24COSK-TC	M52x2	143.0	5.63	50.	0 1.	97	65	103.5	15,000	Carrier H
1502 Hammerlug union male	ale Material: Special Steel and Stainl							s Steel N	laterials	
#	<u>~~~~~</u>		A	В		в		Ċ)	
		mm	incl	n	mm	inc	ch	MPa	psi	
1HE5X-32-24C4462-FLATTC	4 1/8" - 3 ACME	232.0	9.1		108.0	4.2	25	103.5	15,000	
1502 Hammerlug union fema	le	Material: Special Steel and Stainless Steel Materials								
#	<u>^^^^^</u>	А			В			Ċ)	

#	<u>~~~~~</u>	1	4	В		\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HN5X-32-24C4462-TC	4 1/8" - 3 ACME	245.1	9.65	108.0	4.25	103.5	15,000	

1 1/2" 15,000 psi **Black Eagle** 2640N-24V80-15K

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +70°C -40°F up to +158°F
MAX. LENGTH	1,000 m / 3,281 ft
CERTIFICATES	DNVGL Type Approval TAD00000CA (see chapter 4)

2640N-24V80-15K

C	0	(Max. working Test pressure		est sure			Min. bend radius				Collapse pressure			
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
38	1 1/2		2.600	103.5	15,000	155.3	22,500	233.0	33,750	500	19.7	6.5	4.37	6.6	957

Metric female swivel heavy series with O-ring

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>		A		в	$\langle \mathbf{H} \rangle$	\bigcirc		
		mm	inch	mm	inch	mm	MPa	psi	ų
1C95X-38-24COSK-KOP2	M52x2	143.0	5.63	50.0	1.97	65	103.5	15,000	CTCH H

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>	1	4	E	3	(3
		mm	inch	mm	inch	MPa	psi
1HE5X-32-24C4462-KOP2	4 1/8" - 3 ACME	232.0	9.13	108.0	4.25	103.5	15,000

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	1	A	E	3	(3	
		mm	inch	mm	inch	MPa	psi	
1HN5X-32-24C4462-KOP2	4 1/8" - 3 ACME	245.1	9.65	108.0	4.25	103.5	15,000	

2" 5,000 psi **Black Eagle** 2448N-32V80

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +70°C -40°F up to +158°F
MAX. LENGTH	1,400 m / 4,593 ft
CERTIFICATES	DNVGL Type Approval TAD00000CA (see chapter 4)

	D	(\supset	Max. w pres	vorking sure	Te pres	est sure	2		Min. rad	bend ius		C 0	Colla	apse sure
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
50.5	2	80.5	3.170	34.5	5,000	51.8	7,500	138.0	20,000	500	19.7	8.5	5.71	4.9	710

National Pipe Tapered (NPT) male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	,	4	I	3	ø	R	(3	
		mm	inch	mm	inch	mm	inch	MPa	psi	W
101BL-32-32	2" NPT	275.0	10.8	129.0	5.08	83.0	3.27	34.5	5,000	
6015X-32-32-TC	2" NPT	244.0	9.61	107.0	4.22	82.5	3.25	34.5	5,000	_

API Flange, swivel

Material: Special Steel and Stainless Steel Materials

Material: Special Steel and Stainless Steel Materials

#	API size	,	4	E	3	ø	R	Seal	(3
		mm	inch	mm	inch	mm	inch		MPa	psi
18KBL-33-32-API17DSV-10K	2 1/16" 10,000 psi	275.0	10.83	129.0	5.08	210.0	8.27	BX152	69.0	10,000
68K5X-29-32-API17DSV	1 13/16" 10,000 psi	250.0	9.84	113.2	4.46	185.0	7.28	BX151	69.0	10,000

#	API size	1	4	E	3	Seal	(2
		mm	inch	mm	inch		MPa	psi
1HBBL-29-32-10K	1 13/16" 10,000 psi	275.0	10.8	129.0	5.08	BX151	69.0	10,000
1HBBL-33-32-10K-L *	2 1/16" 10,000 psi	280.0	11	134.0	5.28	BX152	69.0	10,000

	Α
	в
ł	~
+	
E	₩ Z

* with Inconel inlay

API Hub

2" 5,000 psi **Black Eagle** 2448N-32V80

602 Hammerlug union n	nale		Material: S	pecial Stee	el and Stai	nless Steel	Materials	
#	<u></u>		4	I	в	(2	
		mm	inch	mm	inch	MPa	psi	
6HE5X-32-32-602APITC	3 13/16" - 3 ACME	280.0	11	141.0	5.55	34.5	5,000	

602 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>		4	I	3	(3
		mm	inch	mm	inch	MPa	psi
6HN5X-32-32-602TC	3 13/16" - 3 ACME	245.1	9.65	106.0	4.17	34.5	5,000

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>	I	A Contraction of the second se	E	3	(3
		mm	inch	mm	inch	MPa	psi
1HEBL-32-32-FLAT	4 1/8" - 3 ACME	278.3	10.9	132.3	5.21	103.5	15,000
6HE5X-32-32-FLATTC	4 1/8" - 3 ACME	292.0	11.5	155.0	6.10	103.5	15,000

B	•

F

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>	I	A Contraction of the second seco	E	3	(2
		mm	inch	mm	inch	MPa	psi
1HNBL-32-32	4 1/8" - 3 ACME	263.0	10.4	117.0	4.61	103.5	15,000
6HN5X-32-32-TC	4 1/8" - 3 ACME	243.0	9.57	106.0	4.17	103.5	15,000

1501 Hammerlug union male, segmented

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>		4	1	В	(3	
		mm	inch	mm	inch	MPa	psi	
1HEBL-32-32-SEG	4 1/8" - 3 ACME	278.3	10.9	132.3	5.21	103.5	15,000	

2202 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^~~~~</u>		A B mm inch mm inc 290.0 11.42 144.0 5.6		3	(3
		mm	inch	mm	inch	MPa	psi
1HEBL-32-32-FLAT-2202	3 5/8" - 5 ACME	290.0	11.42	144.0	5.67	103.5	15,000

2202 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>	A		E	3	(2	
		mm	inch	mm	inch	MPa	psi	
1HNBL-32-32-2202	3 5/8" - 5 ACME	265.0	10.43	119.0	4.68	103.5	15,000	

2" 10,000 psi **Black Eagle** 2580N-32V80

CONSTRUCTION	Core tube
	ressure remorcement to layers of high tensile steel wire
	Cover
	Colour
TEMPERATURE RANGE	-40°C up to +70°C
	-40°F up to +158°F
MAX. LENGTH	1,400 m / 4,593 ft
CERTIFICATES	DNVGL Type Approval TAD00000CA (see chapter 4)
	ABS Product Design Assessment (PDA) Certificate 18-HS1748809-PDA

F

C	00		\supset	Max. v pres	orking Test sure pressure				Min. bend radius				Collapse pressure		
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
50.5	2	84.5	3.330	69	10,000	103.5	15,000	172.5	25,000	800	31.5	9.4	6.32	5.7	825

National Pipe Tapered (NPT) male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	I	4	В		ØR		\bigcirc		Ē
		mm	inch	mm	inch	mm	inch	MPa	psi	U
101BL-32-32	2" NPT	275.0	10.8	129.0	5.08	83.0	3.27	34.5	5,000	
6015X-32-32-TC	2" NPT	244.0	9.61	107.0	4.22	82.5	3.25	34.5	5,000	

B-B-H	-
WL_]	
Ľ _{ØR} ⁻∿_	

API Flange, swivel

Material: Special Steel and Stainless Steel Materials

#	API size	Α		В		ØR		Seal	(3
		mm	inch	mm	inch	mm	inch		MPa	psi
18KBL-33-32-API17DSV-10K	2 1/16" 10,000 psi	275.0	10.83	129.0	5.08	210.0	8.27	BX152	69.0	10,000
68K5X-29-32-API17DSV	1 13/16" 10,000 psi	250.0	9.84	113.2	4.46	185.0	7.28	BX151	69.0	10,000

Γ	
99	
L	

API Hub	d Stainles	s Steel I	Naterials							
#	API size	A		в		A B Seal		Seal	(Z
		mm	inch	mm	inch		MPa	psi		
1HBBL-29-32-10K	1 13/16" 10,000 psi	275.0	10.8	129.0	5.08	BX151	69.0	10,000		
1HBBL-33-32-10K-L *	2 1/16" 10,000 psi	280.0	11	134.0	5.28	BX152	69.0	10,000		

* with Inconel inlay

2" 10,000 psi **Black Eagle** 2580N-32V80

1502 Hammerlug union	n male	nale Material: Special Steel and Stainless Steel Materials								
#	<u>~~~~~</u>		A		3	(
		mm	inch	mm	inch	MPa	psi			
1HEBL-32-32-FLAT	4 1/8" - 3 ACME	278.3	10.9	132.3	5.21	103.5	15,000			
6HE5X-32-32-FLATTC	4 1/8" - 3 ACME	292.0	11.5	155.0	6.10	103.5	15,000			

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>	A		I	В	(
		mm	inch	mm	inch	MPa	psi	
1HNBL-32-32	4 1/8" - 3 ACME	263.0	10.4	117.0	4.61	103.5	15,000	
6HN5X-32-32-TC	4 1/8" - 3 ACME	243.0	9.57	106.0	4.17	103.5	15,000	

1501 Hammerlug union male, segmented

Material: Special Steel and Stainless Steel Materials

#	<u></u>	A		E	3	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HEBL-32-32-SEG	4 1/8" - 3 ACME	278.3	10.9	132.3	5.21	103.5	15,000	

2202 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>	I	4	i	3	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HEBL-32-32-FLAT-2202	3 5/8" - 5 ACME	290.0	11.42	144.0	5.67	103.5	15,000	

2202 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>		A		3	(3	
		mm	inch	mm	inch	MPa	psi	
1HNBL-32-32-2202	3 5/8" - 5 ACME	265.0	10.43	119.0	4.68	103.5	15,000	

2" 15,000 psi **Black Eagle** 2648N-32V80

CONSTRUCTION Co	essure reinforcement 6 layers of high tensile steel wire
Co	ver
TEMPERATURE RANGE -40 -40)°C up to +70°C)°F up to +158°F
MAX. LENGTH 30	0 m / 984 ft
CERTIFICATES DN	IVGL Type Approval TAD00000CA (see chapter 4)

F

		(\supset	Max. v pres	vorking ssure	Te pres	est sure	2		Min. rad	bend ius		0	Colla pres	apse sure
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
50.5	2	86	3.390	103.5	15,000	155.3	22,500	233.0	33,750	800	31.0	12.1	8.13	6	870

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>		A	1	В	(
		mm	inch	mm	inch	MPa	psi	
1HECX-32-32-FLAT	4 1/8" - 3 ACME	298.0	11.7	132.0	5.20	103.5	15,000	0000

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>	L	4	I	В	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HNCX-32-32	4 1/8" - 3 ACME	284.0	11.2	118.0	4.65	103.5	15,000	

2202 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>		4	E	3	(3	
		mm	inch	mm	inch	MPa	psi	
1HECX-32-32-FLAT-2202	3 5/8" - 5 ACME	290.0	11.4	124.0	4.88	103.5	15,000	

2202 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>		4	В		\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HNCX-32-32-2202	3 5/8" - 5 ACME	265.0	10.4	99.0	3.90	103.5	15,000	

3" 5,000 psi **Black Eagle** 2240N-48V80

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +70°C
	-401 up to +1501
MAX. LENGTH	400 m / 1,312 ft
CERTIFICATES	DNVGL Type Approval TAD00000CA (see chapter 4)

2240N-48V80

C)	(\supset	Max. w pres	vorking sure	Test pressure MPa psi				Min. bend radius				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
75	3	114	4.490	34.5	5,000	51.8	7,500	86.2	12,500	1000	40.0	11.5	7.73	2	290

API Flange, swivel			material: Special Steel and Stainless Steel Materials										
#	# API size		A		в		ØR		(Ì	Ē		
		mm	inch	mm	inch	mm	inch		MPa	psi	8		
18KTX-65-48-API17DSV10KL	4 1/16" 10,000 psi	427.0	16.81	261.0	10.28	315.0	12.40	BX155	69.0	10,000			
602 Hammerlug union n	nale		Ма	aterial:	Special	Steel a	nd Stai	inless Si	teel M	aterials			

#	<u>^^^^</u>	,	4	I	3	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HETX-48-48-FLAT-602	5 3/8" - 3 ACME	372.0	14.6	206.0	8.11	34.5	5,000	

Material: Special Steel and Stainless Steel Materials

#		1	A		3	(
		mm	inch	mm	inch	MPa	psi	
1HNTX-48-48-602	5 3/8" - 3 ACME	350.0	13.78	184.0	7.25	34.5	5,000	

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>		4	В		\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HETX-48-48-FLAT	5 3/8" - 3 1/2 ACME	378.0	14.88	212.0	8.35	103.5	15,000	and a

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>	A		E	3	(
		mm	inch	mm	inch	MPa	psi	
1HNTX-48-48	5 3/8" - 3 1/2 ACME	350.0	13.78	184.0	7.25	103.5	15,000	WW L

3" 10,000 psi **Black Eagle** 2440N-48V80

CONSTRUCTION	Core tube
	Cover
TEMPERATURE RANGE	-40°C up to +70°C -40°F up to +158°F
MAX. LENGTH	350 m / 1,148 ft
CERTIFICATES	DNVGL Type Approval TAD00000CA (see chapter 4)

((\supset	Max. v pres	vorking ssure	Test pressure				Min. bend radius				Collapse pressure	
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
75	3	122	4.800	69	10,000	103.5	15,000	138.0	20,000	1100	43.3	18.7	12.57	6.6	957

API Flange, swivel

Material: Special Steel and Stainless Steel Materials

#	API size	A		В		ØR		Seal	\bigcirc		
		mm	inch	mm	inch	mm	inch		MPa	psi	
18KLX-49-48-API17DSV-10K	3 1/16" 10,000 psi	455.0	17.91	244.0	9.61	270.0	10.63	BX154	69.0	10,000	
18KLX-65-48-API17DSV-10K	4 1/16" 10,000 psi	482.0	18.98	246.0	9.68	315.0	12.40	BX155	69.0	10,000	

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>	Α		1	3	(2	
		mm	inch	mm	inch	MPa	psi	
1HELX-48-48-FLAT	5 3/8" - 3 1/2 ACME	395.0	15.55	184.0	7.24	103.5	15,000	

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	А		E	3	(2	
		mm	inch	mm	inch	MPa	psi	
1HNLX-48-48	5 3/8" - 3 1/2 ACME	405.0	15.9	194.0	7.64	103.5	15,000	

3" 15,000 psi **Black Eagle** 2640N-48V80

CONSTRUCTION	Core tube	
	Cover	uter sheath
TEMPERATURE RANGE	-40°C up to +70°C -40°F up to +158°F	
MAX. LENGTH	300 m / 984 ft	
CERTIFICATES	DNVGL Type Approval TAD00000CA (see chapter 4)	

2640N-48V80

(D	Max. working pressure		vorking sure	Test pressure				Min. bend radius				Collapse pressure		
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
75	3	130	5.120	103.5	15,000	155.3	22,500	233.0	33,750	1200	47.2	27.5	18.48	8	1,160

1502 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>		4	E	3	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HE5X-48-48-FLAT	5 3/8" - 3 1/2 ACME	395.0	15.5	184.0	7.24	103.5	15,000	

1502 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>	A		E	3	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HN5X-48-48	5 3/8" - 3 1/2 ACME	405.0	15.9	194.0	7.64	103.5	15,000	

2202 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>		A	I	3	\bigcirc		
		mm	inch	mm	inch	MPa	psi	
1HE5X-48-48-FLAT-2202	6 11/16" - 5 ACME	470.0	18.5	250.0	9.84	103.5	15,000	

2202 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>	А		E	3	(2	
		mm	inch	mm	inch	MPa	psi	
1HN5X-48-48-2202	6 11/16" - 5 ACME	430.0	16.9	210.0	8.27	103.5	15,000	

1 1/2" 10,000 psi **Golden Eagle** 2640M-24V88

C	ONSTRUC	CTION	Co Pr	ore tube . essure rei	nforceme	 nt	.Fluoropo .6 layers	olymer ba of high te	sed inner nsile stee	core wire						
			Co	over Dour			.Extra thi .ColorGa	ck dual la rd™ – reo	iyer TPU s 1 inner she	heath eath and go	olden oute	r sheath				
TEMF	PERATUR	E RANGE	-4	0°C up to +	-70°C											
			-4 Fo	0°F up to + or higher ter	158°F nperature	requireme	nts please	e contact	Polyflex D	ivision						
I	MAX. LEN	GTH	60	10 m / 1,969	9 ft											
2640M	-24V88															
\odot		\supset	Max. working pressure		Test pressure		ľ			bend lius			Collapse pressure			
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi	
38	1 1/2	70.5	2.780	69	10,000	103.5	15,000	230.0	33,350	500	19.7	7.2	4.84	6.5	950	
Metric	female	swivel h	eavy se	eries witl	n O-ring	л	Material:	Specia	l Steel a	and Stair	nless Ste	el Ma	terials			
	#			<u>~~~~</u>	~~~		A		в	(H	Stainless Steel Materials					
						mm	inch	mm	inc	h mr	m M	Pa	psi			
1C95X-	38-24CC	OSK-TC		M52	x2	143.0	5.63	50.0) 1.9	7 65	5 10	3.5 1	5,000	H		
1502 Hammerlug union male						Л	Material:	Specia	l Steel a	and Stair	nless Ste	el Ma	terials			
	#				~~~		A		в		\bigcirc				1	
						mm	inc	h	mm ine		MPa		psi			
1HE5X-	32-24C4	1462-FL	ATTC	4 1/8" - 3	B ACME	232.0	9.1	1 -	08.0	4.25	103.5	5 1	5,000			

Α

inch

9.65

mm

245.1

Material: Special Steel and Stainless Steel Materials

inch

4.25

в

mm

108.0

7

psi

15,000

MPa

103.5

1502 Hammerlug union female

4 1/8" - 3 ACME

#

1HN5X-32-24C4462-TC

2" 5,000 psi **Golden Eagle** 2448M-32V88

CONSTRUCTION	Core tube	
	Cover	sheath
TEMPERATURE RANGE	-40°C up to +70°C -40°F up to +158°F For higher temperature requirements please contact Polyflex Division	
MAX. LENGTH	400 m / 1,312 ft	

2448M-32V88

C	D	(9	Max. w pres	vorking sure	Te pres	est sure	2		Min. rad	bend lius	۲ للا	۳ ۵	Colla pres	apse sure
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
50.5	2	82	3.230	34.5	5,000	51.8	7,500	138.0	20,000	500	19.7	8.5	5.71	4.9	710

National Pipe Tapered (NPT) male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	A		В		ØR		\bigcirc	
		mm	inch	mm	inch	mm	inch	MPa	psi
101BL-32-32	2" NPT	275.0	10.8	129.0	5.08	83.0	3.27	34.5	5,000
6015X-32-32-TC	2" NPT	244.0	9.61	107.0	4.22	82.5	3.25	34.5	5,000

API Flange, swivel

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>	А		в		ØR		Seal	(3
		mm	inch	mm	inch	mm	inch		MPa	psi
68K5X-29-32-API17DSV	1 13/16" 10,000 psi	250.0	9.84	113.2	4.46	185.0	7.28	BX151	69.0	10,000
18KBL-33-32-API17DSV-10K	2 1/16" 10,000 psi	275.0	10.83	129.0	5.08	210.0	8.27	BX152	69.0	10,000

API Hub

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>	A		E	3	Seal	(3
		mm	inch	mm	inch		MPa	psi
1HBBL-29-32-10K	1 13/16" 10,000 psi	275.0	10.8	129.0	5.08	BX151	69.0	10,000
1HBBL-33-32-10K-L	2 1/16" 10,000 psi	280.0	11	134.0	5.28	BX152	69.0	10,000

2" 5,000 psi **Golden Eagle** 2448M-32V88

602 Hammerlug unio	n male		Material: S	Special Ste	el and Stai	inless Stee	l Materials	
#	<u>^^^^^</u>		4	i	в	(3	
		mm	inch	mm	inch	MPa	psi	
6HE5X-32-32-602APITC	3 13/16" - 3 ACME	280.0	11	141.0	5.55	34.5	5,000	
602 Hammerlug unio	n female		Material: S	Special Ste	el and Stai	inless Stee	l Materials	
#	<u>^^^^^</u>		4	i	в	(3	
		mm inch		mm	inch	MPa	psi	
6HN5X-32-32-602TC	3 13/16" - 3 ACME	245.1	9.65	106.0	4.17	34.5	5,000	
1502 Hammerlug uni	on male		Material: \$	Special Ste	el and Stai	inless Stee	l Materials	
#	#			i	в	(7)	B A
		mm	inch	mm	inch	MPa	psi	
1HEBL-32-32-FLAT	4 1/8" - 3 ACME	278.3	10.9	132.3	5.21	103.5	15.000	
6HE5X-32-32-FLATTC	4 1/8" - 3 ACME	292.0	11.5	155.0	6.10	103.5	15,000	
1502 Hammerlug uni	on female		Material: \$	Special Ste	el and Stai	inless Stee	l Materials	
#			4		3	(Z	вА
1HNBI -32-32	4 1/8" - 3 ACME	263.0	10.4	117 0	Inch	MPa 103.5	15 000	
6HN5X-32-32-TC	4 1/8" - 3 ACME	243.0	9.57	106.0	4.17	103.5	15,000	
1501 Hammerlug uni	on male, segmented		Material: \$	Special Ste	el and Stai	inless Stee	l Materials	
#			А В (?)					B A
			inch	_		MDa		
1HFBI -32-32-SEG	4 1/8" - 3 ACME	278.3	10.9	132.3	5.21	103.5	15 000	
2202 Hammerlug uni	on male	21010	Material	Special Ste	el and Stai	inless Stee	l Materials	
			•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8	(7	B
#			•		5)	
		mm	inch	mm	inch	MPa	psi	
INEBL-32-32-FLAI-22	202 3 5/8 - 5 ACIVIE	290.0	11.42	144.0	5.67	103.5	15,000	
2202 Hammerlug uni	on female		Material: \$	Special Ste	el and Stai	inless Stee	l Materials	-
#			4	I	В	(2	
		mm	inch	mm	inch	MPa	psi	
		265.0	10/13	110.0	1 68	103.5	15 000	VIVII -
2" 10,000 psi Golden Eagle 2580M-32V88

F

CONSTRUCTION	Core tube	
	Cover	r sheath
TEMPERATURE RANGE	-40°C up to +70°C -40°F up to +158°F For higher temperature requirements please contact Polyflex Division	
MAX. LENGTH	350 m / 1,148 ft	

2580M-32V88

C		(\supset	Max. v pres	vorking sure	Te pres	est sure	2		Min. rad	bend lius	۲ للا	۲ ۵	Colla pres	apse sure
mm	inch	mm	inch	MPa	psi	MPa	psi	MPa	psi	mm	inch	kg/m	lbs/ft	MPa	psi
50.5	2	84.5	3.330	69	10,000	107.5	15,000	172.5	25,000	800	31.5	9.4	6.32	5.7	825

National Pipe Tapered (NPT) male

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^</u>	ļ	\	E	3	ø	R	(2
		mm	inch	mm	inch	mm	inch	MPa	psi
101BL-32-32	2" NPT	275.0	10.8	129.0	5.08	83.0	3.27	34.5	5,000
6015X-32-32-TC	2" NPT	244.0	9.61	107.0	4.22	82.5	3.25	34.5	5,000

API Flange, swivel

Material: Special Steel and Stainless Steel Materials

#	<u>~~~~~</u>	ļ	4	E	3	ø	R	Seal	(2
		mm	inch	mm	inch	mm	inch		MPa	psi
68K5X-29-32-API17DSV	1 13/16" 10,000 psi	250.0	9.84	113.2	4.46	185.0	7.28	BX151	69.0	10,000
18KBL-33-32-API17DSV-10K	2 1/16" 10,000 psi	275.0	10.83	129.0	5.08	210.0	8.27	BX152	69.0	10,000

Material: Special Steel and Stainless Steel Materials API Hub # 1 Seal Α в mm inch inch MPa mm psi 1HBBL-29-32-10K 1 13/16" 10,000 psi 275.0 10.8 129.0 5.08 BX151 69.0 10,000 1HBBL-33-32-10K-L * 2 1/16" 10,000 psi 280.0 11 134.0 5.28 BX152 69.0 10,000 * with Inconel inlay

2" 10,000 psi **Golden Eagle** 2580M-32V88

1502 Hammerlug uni	on male		Material: Special Steel and Stainless Steel Materials								
#	<u></u>	,	A	E	3	(3				
		mm	inch	mm	inch	MPa	psi				
1HEBL-32-32-FLAT	4 1/8" - 3 ACME	278.3	10.9	132.3	5.21	103.5	15,000				
6HE5X-32-32-FLATTC	4 1/8" - 3 ACME	292.0	11.5	155.0	6.10	103.5	15,000				
1502 Hammerlug uni	on female		Material: \$	Special Ste	el and Stai	nless Steel	l Materials				
4	^^^^			_	_	(2	A			

#	<u>·····</u>		4		В	(9	
		mm	inch	mm	inch	MPa	psi	
1HNBL-32-32	4 1/8" - 3 ACME	263.0	10.4	117.0	4.61	103.5	15,000	
6HN5X-32-32-TC	4 1/8" - 3 ACME	243.0	9.57	106.0	4.17	103.5	15,000	_

1501 Hammerlug union male, segmented

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>		A		В	(F	
		mm	inch	mm	inch	MPa	psi	
1HEBL-32-32-SEG	4 1/8" - 3 ACME	278.3	10.9	132.3	5.21	103.5	15,000	22

2202 Hammerlug union male

Material: Special Steel and Stainless Steel Materials

#		,	A	E	3	(2
		mm	inch	mm	inch	MPa	psi
1HEBL-32-32-FLAT-2202	3 5/8" - 5 ACME	290.0	11.42	144.0	5.67	103.5	15,000

2202 Hammerlug union female

Material: Special Steel and Stainless Steel Materials

#	<u>^^^^^</u>		4	I	3	(3	
		mm	inch	mm	inch	MPa	psi	
1HNBL-32-32-2202	3 5/8" - 5 ACME	265.0	10.43	119.0	4.68	103.5	15,000	

F

G

CHAPTER G

HOSE UMBILICALS

Multitube Hoses		G-2
-----------------	--	-----

MULTITUBE HOSES

BOP Bundles, Electro-Hydraulic Umbilicals and Hotlines

- Over 750,000 feet of bundles in service.
- Over 40 million feet of pilot hose produced.

FEATURES

- Dependability and Experience Over 30 years of Oil & Gas thermoplastic hose design and engineering experience
- · Field Tested Over 750,000 feet of bundles and over 40 million feet of pilot hose produced for rigs
- G Capabilities BOP umbilical lengths up to 7,000+ ft and 90+ pilot hoses within one umbilical
 - Extended Service Life Compact pilot hose design allows for more spares to be installed in the bundle without increasing the O.D.

BOP UMBILICALS WITH VELOCITY HOSE

- · BOP umbilicals are used on offshore drilling rigs to control the subsea BOP stack
- Parker's BOP have a smaller O.D. which means Parker can produce BOP
 umbilicals with more pilot lines without increasing the O.D. of the umbilical
- Parker umbilicals are built with Velocity Hose to allow for precise control and faster response times when activating subsea valves on the BOP pod

ELECTRO-HYDRAULIC UMBILICALS

- Parker is an industry leader in designing short length electro-hydraulic umbilicals for offshore applications
- Parker high-pressure subsea hoses, (1/4", 3/8" and 1/2" I.D.), are in compliance to API 17e and pressure ratings up to 15,000 psi. These hoses can be combined into an umbilical configuration with electrical power cables included

HOTLINE HOSE

- Subsea Hotline's are the primary emergency hydraulic control line providing critical service for various subsea functions
- Parker Hotline hoses are specially designed to provide fast response time and low volumetric expansion with length capability of 14,000 feet continuous

Hose Umbilicals
NOTES

NOTES .			

Н

CHAPTER H

WORKSHOP EQUIPMENT

Parker Polyflex guidelines for hose assembly and workshop certification	H-2
---	-----

PARKER POLYFLEX GUIDELINES FOR HOSE ASSEMBLY AND WORKSHOP CERTIFICATION

Information on workshop equipment, hose assembly, and workshop certification is contained in the following manual:

"Parker Polyflex Guidelines for Hose Assembly and Workshop Certification".

Please ask your local Parker distributor.

CHAPTER I

ACCESSORIES & TOOLING

Containment grips.		
--------------------	--	--

CONTAINMENT GRIPS

#	Description
HS-03	Containment grip DN05, 10-15
HS-05	Containment grip DN08, 15-20
HS-08	Containment grip DN12, 20-30
HS-12	Containment grip DN20, 30-40
HS-16	Containment grip DN25, 40-50
HS-20	Containment grip DN32, 50-60
HS-28	Containment grip DN46, 60-70
HS-32	Containment grip DN50, 90-110

CHAPTER J

TECHNICAL INFORMATION

Parker engineering manual (PFDE-ES 28)	J – 2
Pressure drop tables	J – 46
Recommended tightening procedures	J – 48
Test equipment for qualification testing and production control	J – 49
Parker safety guide.	J – 54
Glossary	J – 63
Unit conversion table	J – 65

J

JOOLD				SPEC
26	G. F	ord	PARKER ENGINEERING MANUAL	PFDE-ES28
EVISE	D / CHE	CKED	Parker Hannifin Corporation	REVISION
2	M. L 0. Apr	evin 1. 2021	Polymer Hose Division Europe	U
JBJEC	etruct	ions for	handling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	PAGE: 1 of 43
Cor	itent	s		
1	Sco	pe		3
2	Hos	se Featur	es	3
	2.1	Desig	n life	3
3	Sto	rage		4
4	Наг	ndling		4
	4.1	Perso	nnel	4
	4.2	Spool	ing and reeling	4
5	Pos	sible cau	ises of premature failure, and suggested preventative measures	5
	5.1	Bendi	ing the hose below the minimum bend radius	5
	5.2	Dama	ge of the hose cover	6
	5.3	Kinke	- d, crushed, or twisted hose	6
	5.4	Chem	ical attack or ageing of the core tube	6
	5.5	Dama	age or corrosion of the end fitting	6
	5.6	Flow	rates	6
6	Ins	pection g	guidelines	7
	6.1	Gene	ral	7
	6.2	Frequ	encies and Levels of Inspection	7
	6.3	Routi	ne in-field Pre Job and Post Job Maintenance, Inspection and testing	8
		6.3.1	Routine in-field Pre Job Maintenance, Inspection and testing	8
		6.3.2	Routine in-field Post Job Maintenance, Inspection and testing	8
	6.4	Level	1 – On Site Inspection by User	8
		6.4.1	Level 1 – Visual Inspection	9
		6.4.2	Level 1 – Hose core tube inspection with a borescope	9
		6.4.3	Level 1 – Hydrostatic pressure test	9
	6.5	Level	2 – Inspection/Recertification by a Parker Certified Facility	9
		6.5.1	Customer Pre-dispatch procedure before returning a hose assembly for Level 2 inspection	
		6.5.2	Level 2 - Inspection Amount	10
		6.5.3	Level 2 - External inspection	10

ISSUED:		SPEC:
G. Ford 26. January 2010	PARKER ENGINEERING MANUAL	PFDE-ES28
REVISED / CHECKED	Parker Hannifin Corporation	REVISION
M. Levin	Delumer Hees Division Europe	
20. Apr. 2021	Polymer Hose Division Europe	0
SUBJECT:		PAGE:
Instructions for har	Idling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	2 of 43
6.5.5 L	evel 2 - Inspection report	11
7 Procedure for r	epair and recertification	11
7.1 Repair		11
7.1.1 T	wisted hose, hose with the reduced OD, flattened hose	11
7.1.2 H	lose with cover damage	11
7.1.3 F	itting re-ending	12
7.2 Recertific	cation	12
8 Parker Certified	Distributors/ Service Addresses	12
Appendix 1: Chemica	al resistance chart	14
Appendix 2: Data for	r tensile loading and weights of Polyflex hoses	22
Appendix 3: Procedu	re for a repair of a local damage in the outer cover	28
Appendix 4: Recomm	nendations for use of Black Eagle hoses with gas and sour gas	37

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIFIN CORPORATION AND ITS AFFILIATES ("PARKER"), MAY NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETUNNED OR DESTROYED AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT IMPROPER SELECTION OR IMPROPER USE OF PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE, AND IS SOLELY RESPONSIBLE THROUGH ITS OWN ANALYSIS AND TESTING FOR THE FINAL SELECTION OF PARKER SYSTEM AND COMPONENTS AND ASSURING THATA LL PERFORMANCE, EMDURANCE, MANTENANCE, SAFETY AM WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER. YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT. ALL POLICE DESCRIPTION

ISSUED:		SPEC:
G. Ford	PARKER ENGINEERING MANUAL	PEDE-ES28
26. January 2010		TTDE-E020
REVISED / CHECKED	Parker Hannifin Corporation	REVISION
M. Levin	Delumer Lless Division Furance	
20. Apr. 2021	Polymer Hose Division Europe	U
SUBJECT:		PAGE:
Instructions for har	dling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	4 of 43
3 Storage		

Hoses and hose assemblies should be stored, wherever possible, empty and protected from the elements in a stress-free condition either straight, in a coil, or on a drum. The inside diameter of the coil or drum should not be less than two times the minimum bend radius. If a hose assembly has been used with chemicals, it shall be flushed with water before putting it to storage (see also P.5.4).

Example: hose with minimum bend radius 800 mm; minimum size of drum core/belly should be 2×800 mm = 1.6 m.

The fittings should be capped to prevent ingress of dirt or other contamination and any exposed threads protected from damage.

Storage of hoses and hose assemblies should take into account potential exposure to corrosive liquids, rodents, insects, UV light and high temperatures. Storage temperatures should be in the range of hose operating temperatures.

4 Handling

4.1 Personnel

Only trained personnel shall handle and connect hose assemblies.

Incorrect handling will seriously reduce the lifetime of the hose and could cause dramatic failure. The use of wire rope or chains directly against the outer cover should be avoided, and the routing of the assembly should ensure the hose is never bent below its minimum bend radius or twisted. Special attention should be paid to the area at the back of the fitting.

4.2 Spooling and reeling

When reeling long length hose onto a drum it is essential to minimize the tension on the hose. Proof testing of a "stretched" hose while on the drum can cause premature failure of the hose or damage to the drum.

When operating from a vessel it is recommended that the hose is pressurized during the subsea deployment and retrieving operation. This recommendation is based on the fact that during these operations the hose is always subjected to tensile force, at least due to its own weight. Tensile forces will result in hose elongation and possible deformation.

This is significantly reduced by pressurizing the hose, especially important if it is planned to proof test the hose assembly while coiled on a drum or winch. Deployment and retrieving pressures up to 200 bar had been found to be sufficient but this depends on the hose type and local safety regulations. For recommendations of pressure / load values see Appendix 2.

When re-spooling a long length assembly, the pay-off and take-up drums should be inline and a minimum of 10m apart. Depending on how the hose was delivered or re-spooled, the hose shall be spooled from either the top of the pay-off drum onto the top of the take-up drum or from bottom to bottom. See Fig. 1 and Fig. 2. These recommendations minimize the possibility of inducing twist into the hose.

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNERY CORPORATION AND ITS AFFLIATES ("PARKER"). MAY NOT BE COPIED OR DISCOLGED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, NO MUST BE RETURNED OR DISCONTRULE AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SUBJECTION OR IMPROPER USE OF AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SUBJECTION OR IMPROPER USE OF APAKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONALI MUJIAY AND POPERTY DAMAGE, AND IS SOLELY RESPONSIBLE THROUGH ITS OWN ANALY ASSA AND WARNING REQUEREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT. ALL RIGHTS RESERVED.

5.2 Damage of the hose cover			
Instructions for han	dling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	6 of 43	
20. Apr. 202 I	· · · · · · · · · · · · · · · · · · ·	PAGE:	
M. Levin	Polymer Hose Division Europe	U	
REVISED / CHECKED	Parker Hannifin Corporation	REVISION	
G. Ford 26. January 2010	PARKER ENGINEERING MANUAL	PFDE-ES28	
SSUED:		SPEC:	

Polyflex ColorGard[™] extra thick, dual colour cover significantly reduces the risk of exposing the reinforcing wires. If the outer black cover has been abraded to the point that the "early warning" red inner cover can be seen, but the wire reinforcement has not been exposed, the assembly is still fit for use but shall be scheduled for inspection. Alternatively, a repair according to section 7.1.1 may be considered.

If the hose cover is damaged to the extent that the reinforcing wires are exposed, localized corrosion of the wires could occur causing a progressive reduction in burst pressure, and ultimately failure.

If used subsea, a damaged cover will allow water to ingress into the carcass of the hose and could cause the corrosion of the wire reinforcement and/or collapse of the core tube.

It is strongly recommended to immediately remove from service any hose assembly with exposed wires. See also section 7.1.2 for details. A Parker Polyflex specialized testing facility should be contacted and the procedure described in section 6.5.1 shall be followed.

5.3 Kinked, crushed, or twisted hose

If a visible distortion of the hose occurred (kinked, crushed, twisted) it will have an impact on the function and lifetime of the hose. Reduction of burst pressure and external collapse pressure could result in a sudden failure of the hose assembly. This distortion can be caused by a high tensile load or other factors.

Maintaining pressure in the hose will significantly reduce the risk of such distortion occurring.

5.4 Chemical attack or ageing of the core tube

The use of chemicals at differing concentrations and/or temperatures can have a major effect on the life of a hose assembly and may cause dramatic hose failure. It is important to reference the chemical compatibility chart in the appendix of this document and keep the temperatures and concentrations within the specified limits.

Note:

It is critical that the hose is thoroughly flushed with water after each use.

If the hose is not flushed, the concentration of the fluid that is left in the assembly can increase and cause localised failure of the core tube.

5.5 Damage or corrosion of the end fitting

Incorrect handling or insufficient flushing after use could result in damage or corrosion of the end fitting. This will make connection difficult, probably cause leakage, and could result in sudden failure of the connection.

5.6 Flow rates

Depending on the abrasive properties of the fluid, high flow rates can result in erosion in the core tube or in the bore of the end fitting.

The maximum recommended flow rate is 15 m/sec, although much higher rates have been used short term with non-abrasive fluids. Note possible temperature increase because of high flow velocities.

Note:

The condition of the core tube and end fittings are checked as part of inspection (see 6.2).

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIEN CORPORATION AND ITS AFFLIATES ("PARKER"), MAY NOT BE COPED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT IMPROPER SUBLECTION OR IMPROPER USE OF AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT IMPROPER SUBLECTION OR IMPROPER USE OF AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT IMPROPER SUBLECTION OR IMPROPER USE OF ARKER SYSTEMES OR COMFORMENT CAN CAUSE BEATH, PERSONAL ILUIRY AND PROPERTY DAMAGE, AND IS SOLELY RESPONSIBLE THROUGHTS OWN ANALYSIS AND WARNING REQUEREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT. ALL RIGHT'S RESERVED.

1330ED.			SDEC:
G. Ford 26. January 2010	PAR	KER ENGINEERING MANU	AL PFDE-ES28
REVISED / CHECKED	P	arker Hannifin Corporation	REVISION
M. Levin 20. Apr. 2021	Po	lymer Hose Division Europ	e U
Instructions for han	dling, mainten BLACK EAGI	ance, inspection and repair of Parker .E hoses and assemblies	PAGE: 7 of 43
6 Inspection g	uidelines		
6.1 General			
Hoses and hose assemb service, causing expensi personnel injuries.	lies have a limit ve damages of	ed lifetime and if they are not properly property, unnecessary downtimes, relea	maintained, they could fail in se of hazardous substances an
Properly planned inspec ensure safety and are le	tions, preventives s expensive th	ve actions and timely hose replacements an replacements or repairs of hose asse	are highly recommended to mblies after a failure.
Parker is recommending	; inspection and	l re-testing of Black Eagle Hoses on a reg	ular basis.
6.2 Frequencies	and Levels	of Inspection	
The table below represe conditions in various ap inspection is within the	nts the general plications, the f hose assembly	Parker recommendation. However, due inal responsibility to define proper inspe owner/user.	to huge variances in operating
isted below:	lid be taken inti	o account while defining inspection inte	vais and amount of inspection
Operating press	ures		
Operating temp	eratures		
 Operating times Service fluid type 	, a dansity & vis	cosity	
 PH levels, Chlori 	ide content	cosity	
Concentration o	f acids (i.e. HCL	.,)	
 Flow rates (fluid 	is, gas)		
 Sand content (e) Additional stress 	rosion monitori s levels (i.e. ten	ing) or other abrasive materials sile loads)	
It is also recommended Black Eagle hose asseml	to review these oly.	operating parameters in order to best e	evaluate the condition of a use
The history of each asse	mbly should be	logged showing the results of previous	inspections and any repairs.
	Reco	ommended Frequencies of Inspectio	n
		Every 6 months or during	Every 2 years
Pre- and po	ost-job	installation/ removal	Lvery 2 years

-Parker

J

	PARKER ENGINEERING MANUAL	PFDE-ES28
REVISED / CHECKED	Parker Hannifin Corporation	REVISION
M. Levin	Polymer Hose Division Europe	U
SUBJECT:		PAGE:
Instructions for har	ndling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	8 of 43
5.3 Routine in-f	ield Pre Job and Post Job Maintenance, Inspection a	and testing
6.3.1 Routine in-fie	eld Pre Job Maintenance, Inspection and testing	
The operator shall visua found the hose shall be	ally inspect the hose assembly before every job. If any of the follow removed from service and scheduled for Level 1 inspection.	ving conditions are
Damage to the	outer cover which exposes the reinforcing wires.	
 Kinked, crushed 	d, or twisted hose.	
Reduction in the Blistered soft (degraded or loose outer cover	
 Cracked, damag 	ged, or badly corroded fittings.	
f in doubt, contact the	original supplier or a Parker Polyflex specialized testing facility for	advice.
Regular in-field pressure	e testing. (normally required after attaching connectors prior to be	se deployment)
should be restricted to pressure of the hose as The hose shall be monit bulging of the hose bod	a test pressure of 1.1× actual operating pressure, or the maximum sembly. Test duration should be 15 minutes. Preferably use water tored during the test and observed for signs of leakage in the hose ly, twisting or any abnormal distortion.	stated working for pressure testing. and fittings, any
Prior to all pressure test core tube failure. To co steady and constant for	ting it must be ensured that all air is purged out of the hose. Failur ntrol that all air is removed it is sufficient to observe that the fluid r minimum of 5 minutes without any air bubbles or pulsations.	e to do so may result in flow leaving the hose is
C 2 2 Doubling in fiel		
6.3.2 Routine In-fiel	Id Post Job Maintenance, Inspection and testing	
On completion of each sufficient clean water to	Id Post Job Maintenance, inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l	/ cleaned with hose assembly.
On completion of each sufficient clean water to The operator shall visua are found the assembly	Id Post Job Maintenance, inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio	/ cleaned with hose assembly. following conditions n.
On completion of each sufficient clean water to The operator shall visua are found the assembly Oamage to the	Id Post Job Maintenance, inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires.	/ cleaned with hose assembly. following conditions n.
On completion of each sufficient clean water to The operator shall visua are found the assembly Damage to the Kinked, crushed	Id Post Job Maintenance, inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose.	/ cleaned with hose assembly. following conditions n.
On completion of each of	Id Post Job Maintenance, inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose. e outside diameter of the hose.	/ cleaned with hose assembly. following conditions n.
 0.3.2 Routine in-fiel On completion of each of sufficient clean water to sufficient clean water to the operator shall visual are found the assembly Damage to the Minked, crushed Reduction in the Blistered, soft, of Cracked, damage 	Id Post Job Maintenance, inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose. e outside diameter of the hose. degraded, or loose outer cover. zed. or badly corroded fittings.	/ cleaned with hose assembly. following conditions n.
 b.3.2 Routine in-fiel On completion of each sufficient clean water to The operator shall visua are found the assembly Damage to the Kinked, crushed Reduction in the Blistered, soft, o Cracked, damag If in doubt, contact the 	Id Post Job Maintenance, Inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose. degraded, or loose outer cover. ged, or badly corroded fittings. original supplier or a Parker Polyflex specialised testing facility for	/ cleaned with hose assembly. following conditions n. advice.
 6.3.2 Routine In-Hei On completion of each sufficient clean water to sufficient clean water to the assembly Damage to the Kinked, crushed Reduction in the Blistered, soft, o Cracked, damagifi in doubt, contact the 6.4 Level 1 – On 	Id Post Job Maintenance, Inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose. e outside diameter of the hose. degraded, or loose outer cover. ged, or badly corroded fittings. original supplier or a Parker Polyflex specialised testing facility for Site Inspection by User	/ cleaned with hose assembly. following conditions in.
 b.3.2 Routine In-Heil On completion of each - sufficient clean water to are found the assembly Damage to the - Kinked, crushed Reduction in the Blistered, soft, o Cracked, damage If in doubt, contact the 6.4 Level 1 – On The Black Eagle hose as knowledge in using Black 	Id Post Job Maintenance, Inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose. e outside diameter of the hose. degraded, or loose outer cover. ged, or badly corroded fittings. original supplier or a Parker Polyflex specialised testing facility for Site Inspection by User sembly shall be inspected on site by highly skilled users, who have ck Eagle hoses. All observations should be noted and logged.	/ cleaned with hose assembly. following conditions in. advice. experience and
 b.3.2 Routine in-fiel On completion of each - sufficient clean water to sufficient clean water to the operator shall visual are found the assembly Damage to the - Kinked, crushed Reduction in the Blistered, soft, o Cracked, damage If in doubt, contact the find doubt, contact the Black Eagle hose as knowledge in using Black Recommended Inspect Visual inspection 	Id Post Job Maintenance, Inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose. e outside diameter of the hose. degraded, or loose outer cover. ged, or badly corroded fittings. original supplier or a Parker Polyflex specialised testing facility for a Site Inspection by User sembly shall be inspected on site by highly skilled users, who have ck Eagle hoses. All observations should be noted and logged.	/ cleaned with hose assembly. following conditions in. advice. experience and
 b.3.2 Routine In-Hei On completion of each of sufficient clean water to sufficient clean water to the operator shall visual are found the assembly Damage to the operator shall visual are found the assembly Damage to the operator shall visual are found the assembly Blistered, soft, operator shall visual and the assembly operator shall be an operator shall be as knowledge in using Black Recommended Inspection Hose core tube ins 	Id Post Job Maintenance, Inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the l ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose. e outside diameter of the hose. degraded, or loose outer cover. ged, or badly corroded fittings. original supplier or a Parker Polyflex specialised testing facility for Site Inspection by User sembly shall be inspected on site by highly skilled users, who have ck Eagle hoses. All observations should be noted and logged. ion Amount pection with borescope	/ cleaned with hose assembly. following conditions in. advice. experience and
 b.3.2 Routine In-Hei On completion of each- sufficient clean water to are found the assembly Damage to the - Kinked, crushed Reduction in thi Blistered, soft, o Cracked, damage If in doubt, contact the 6.4 Level 1 – On The Black Eagle hose as knowledge in using Black Recommended Inspect Visual inspection Hose core tube ins Hydrostatic pressu 	Id Post Job Maintenance, Inspection and testing operation both inside and outside hose surfaces should be flushed o ensure that all chemicals or residues are fully removed from the I ally inspect the hose assembly during every recovery. If any of the f shall be removed from service and scheduled for Level 1 inspectio outer cover which exposes the reinforcing wires. d, or twisted hose. e outside diameter of the hose. degraded, or loose outer cover. ged, or badly corroded fittings. original supplier or a Parker Polyflex specialised testing facility for a Site Inspection by User sembly shall be inspected on site by highly skilled users, who have ck Eagle hoses. All observations should be noted and logged. ion Amount pection with borescope re test	/ cleaned with hose assembly. following conditions in. advice. experience and

ISSUED:		SPEC		
G. Ford	PARKER ENGINEERING MANUAL	PFDE-ES28		
REVISED / CHECKED	Parker Hannifin Corporation	REVISION		
M. Levin 20 Apr 2021	Polymer Hose Division Europe	U		
SUBJECT: Instructions for han	dling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	PAGE: 9 of 43		
6.4.1 Level 1 – Visua	al Inspection	<u>n</u> l		
For this purpose, the ho etc. for good viewing re	use assembly should be cleaned inside and outside with water to ren sults.	nove oily traces, dirt,		
The outer cover of the h bubbles, bulges, abrasic should be checked for s cracks and far advanced	The outer cover of the hose body shall be visually inspected for signs of leakage, excessive wear, looseness, kinks, bubbles, bulges, abrasion or cuts. The back side of a bend restrictor (if used) and the hose area behind the fitting should be checked for signs of over-bending/ kinking. The end fittings shall be checked for any signs of leakage, cracks and far advanced corrosion.			
See 7.1 for possible hos	e repairs.			
6.4.2 Level 1 – Hose	core tube inspection with a borescope			
A suitable video scope e Inspect the <u>cleaned</u> hos pressurized gases shoul the liner has collapsed. shall be removed from s	A suitable video scope equipment is required to inspect the hose core tube and the inside surface of the fittings. Inspect the <u>cleaned</u> hose core tube for colour change, cracks, blisters or erosion. Hoses that have been exposed to pressurized gases should be inspected thoroughly to determine, if the integrity of the liner has been breached or the liner has collapsed. If bulges, blisters, punctures or any other damage of the core tube is detected, the hose shall be removed from service and be replaced.			
Some Parker Polyflex hr	oses have a special feature of ColorGard™ core tube. With black insi	de laver and vellow		
outside one, damage to	core tube becomes visible.	ac layer and yellow		
If the hose core tube is	damaged to the extent that yellow layer is exposed, hose shall be re	moved from service.		
6.4.3 Level 1 – Hydr See 6.3.1 for details.	6.4.3 Level 1 – Hydrostatic pressure test See 6.3.1 for details.			
6.5 Level 2 – Ins	nection/Recertification by a Parker Certified Facility			
To be able to perform " equipment, personnel a and their personnel to a	Level 2" inspections and re-certifications of Black Eagle hose assemb and expertise is required. Parker Polyflex have trained and certified s assemble, inspect, test, repair and recertify hose assemblies. Their e	blies, dedicated specialized facilities quipment includes:		
 Inspection equipment (i.e. videoscopic camera) Manufacturing equipment (i.e. a suitable crimper with enough crimping force, die sets, gauges) High volume filling pumps for preparing pressure tests Torcing equipment (accurate the work with with the neoscibility to preparing pressure test graphs) 				
 Safe testing chamber 				
Hose management is an	Hose management is an essential part of the service they provide.			
If necessary, the Black E	If necessary, the Black Eagle hose assemblies shall be decommissioned from the installation and returned to			
Level 2 inspections shall	l be conducted, if possible, during a regular equipment shutdown.			
THIS DOCUMENT AND THE INFORM. NOT BE COPIED OR DISCLOSED TO AND ALL FURTHER USE DISCONTIN PARKER SYSTEMS OR COMPONENT TESTING FOR THE FINAL SELECTIO WARNING REQUIREMENTS OF THE I RIGHTS RESERVED.	NTON IT CONTAINS IS CONFIDENTIAL AND PROPRIET ARY TO PASKER-HANNIE'N CORPORATION AND OTHERS ON USED FOR ANY PERPOSE OTHER THAN CONDUCTING DUDBAESS WITH PARKER, AND MU UED AT PARKER SEQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MARPORE SELE IS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE. AND IS SOLELY RESPONSIBLE T OF PARKER SYSTEM AND COMPONENTS AND ASSUMING THAT ALL PERFORMANCE, ENDURADE, INTENDED APPLICATION ARE MET. COPPRIGHT PARKER. YEAR OF COPYRIGHT IS THE YEAR(S) INDICA	TS AFFILIATES ("PARKER"), MAY ST BE REFURNED OR DESTROYED ZTION OR IMPROPER USE OF HROUGH ITS OWN ANALYSIS AND MAINTENANCE, SAFETY AND ATED ON THIS DOCUMENT. ALL		

.

ISSUED:		SPEC:		
G. Ford 26. January 2010	PARKER ENGINEERING MANUAL	PFDE-ES28		
REVISED / CHECKED	Parker Hannifin Corporation	REVISION		
M. Levin 20. Apr. 2021	Polymer Hose Division Europe	U		
SUBJECT:		PAGE:		
Instructions for har	ndling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	12 of 43		
Repair of such a hose as have been subjected to proof pressure tested. I for the appropriate hos	ssembly is possible, but it will include cutting out the section of the h water. Obviously, this will require new fittings to be crimped and ho Procedure for proof pressure testing in this case is specified in the as e type.	ose, where the wires se assembly to be sembly instructions		
After successfully passing recertification date (see	ng pressure test, hose assembly shall be permanently marked with the 7.2).	ie new		
The testing facility will i joining the lengths toge	recommend if the condition of the hose warrants the cost of assemb ther and proof testing.	ing new fittings,		
7.1.3 Fitting re-ending In case of fitting damage or hose damage near fitting (usually due to kinking) it is allowed to cut off the fitting and replace it by a new one. This can be done by Parker certified facilities only and will require pressure test at 1.5 x maximum working pressure of hose assembly. Becommended testing time = 15 minutes				
7.2 Recertification				
Recertification shall inc	lude Level 2 inspection acc. to section 6.5.2 and a hydrostatic pressu	re test.		
Unless otherwise agree	d between customer and test facility, test conditions are:			
Test pressure = 1.5× maximum working pressure of hose assembly. Allow for at least 30 minutes stabilization time before starting recording pressure decay.				
Pressure hold time = 1	hour			
Pressure decrease of m	aximum 5% is allowed.			
To avoid hose damage to 1.5 x maximum work testing during recertific	To avoid hose damage due to excessive pressurizations, it is recommended to limit the number of pressure tests to 1.5 x maximum working pressure to 20 for the lifetime of the hose assembly. This may include pressure testing during recertification as well as pressure testing after fitting re-ending.			
After successfully passing pressure test, hose assembly shall be permanently marked with the word RECERT plus the consecutive number of recertification, i.e. "RECERT- 3" and recertification date.				
It is recommended to k	It is recommended to keep the number of recertifications limited to 10 times.			

8 Parker Certified Distributors/ Service Addresses

The below listed companies have been certified by Parker Polyflex to manufacture, inspect and re-certify Black Eagle hose assemblies:

- Abdex Industries WA, 49A Sustainable Avenue, Bibra Lake, WA 6163, Australia, +61 89418 3044
- Beattie Industrial Ltd., Div. of Newfoundland Offshore, 1345 Topsail Road, PO Box 8398, A1B 3N7 Paradise, NF, Canada, +1 (709) 782-2623
- Flexiflo Corp., PO Box 18532, Jebel Ali Free Zone, Dubai, United Arab Emirates, +971 4 8838131
- Fluid Control Service AS, Ljosheimsvegen 1, 4050 Sola, Norway, +47 51 64 49 50
- Active Service AS, Sjøkrigsskoleveien 15, 5165 Laksevåg, Norway, +47 55 94 22 50
- Hydrafit AS, Bleivassvegen 30F, 5347 Ågotnes, Norway, +47 56 12 67 00

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIFIN CORPORATION AND ITS AFFILIATES ("PARKER"), MAY NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTUNED AT PARKERS REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT IMFROPER SELECTION OR IMPORPER USE OF PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONALI MJURY AND PROPERTY DAMAGE, AND IS SOURD THAT UMFROPER SELECTION OR IMPORPER USE OF TESTING FOR THE FINAL SELECTION OF PARKERS SYSTEM AND COMPONENTS AND ASSUMING THAT ALL PERFORMANCE, BAPENTANCE, SAFETY AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET, COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEARIS, INDICATED ON THIS DOCUMENT. ALL RIGHTS RESERVED.

ISSUED:		SPEC:
G. Ford 26. January 2010	PARKER ENGINEERING MANUAL	PFDE-ES28
REVISED/CHECKED M. Levin 20. Apr. 2021	Parker Hannifin Corporation Polymer Hose Division Europe	REVISION
SUBJECT: Instructions for han	dling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	PAGE: 13 of 43
 *Hydrasun Grou 1224 618618 (2 Mento AS, PO.E Norwesco Indus *Parker Hannifin DIVISION EURO Parker Hannifin Note: * only these facilit testing and recertification 	up Ltd., Gateway Business Park, Moss Road, Aberdeen AB12 3GQ, Ur 4 Hrs.) lox 44, Kontinentalveien 22, 4098 Tananger, Norway, +47 51 64 86 0 stries (1983) Ltd., 6908L - 6th Street S.E., Calgary AB, T2H 2K4, Canad n Manufacturing Germany GmbH & Co. KG - FLUID CONNECTORS GR PE - An der Tuchbleiche 4 - 68623 Lampertheim, Germany, +49 (0) 6 Corporation, Parflex Division, 11151 Cash Road, Stafford, TX 77477, ties are currently certified to re-end 3" Black Eagle hoses. Level 2 ins on of all sizes can be done by all above listed facilities.	safefulates ('Parker'), MAY
AND ALL FURTHER USE DISCONTIN PARKER SYSTEMS OR COMPONENT TESTING FOR THE FINAL SELECTIO WARNING REQUIREMENTS OF THE RIGHTS RESERVED.	UED AT PARKER'S REGUEST. THE REFINENCE FURNE VIEW WORKS WITH PARKER, AND BUD SECOND AND AN ADVECTOR AND	TION OR IMPROPER USE OF ROUGH ITS OWN ANALYSIS AND AINTENANCE, SAFETY AND TED ON THIS DOCUMENT. ALL

.

ISSUED:			SPEC:							
26.	G. Ford January 2010	PARKER ENGINEERING MANUAL	PFDE-ES28							
REVISE	D / CHECKED	Parker Hannifin Corporation	REVISION							
2	M. Levin 0. Apr. 2021	Polymer Hose Division Europe	U							
SUBJEC	etructions for hance	lling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	PAGE: 14 of 43							
The below chart contains chemical resistance information for Polyamide 11 (Nylon 11), Fluoropolymer and Proprietary Material used on Nautilus 20 hose. These are the most common core tube materials used for Parker Polyflex oil & gas hoses										
mese are the most common core tube materials used for Parker Polynex on a gas noses										
Please	Please refer to the hose datasheets for more detailed information.									
Rati	ng codes									
E	Excellent	Good to excellent. Little or no swelling, tensile or surface change	ge. Preferred choice.							
A	Good	Good to excellent. Little or no swelling, tensile or surface changes temperature and type of fluid.	ge. Limitations with							
В	3 Limited Marginal or conditional. Noticeable effects but not necessary indicating lack of serviceability. Further testing is suggested for specific application. Very long-term effects.									
х	Unsatisfactory	Poor or unsatisfactory. Not recommended without extensive a	nd realistic testing.							
-	- Indicates that this was not tested.									
*	Swelling	Increase of volume of material, due to absorption of a solvent.								

Material code for hose core tube

N: Polyamide

M: Coextruded core tube with Fluoropolymer inner liner

P: Proprietary Specification (Nautilus 20 hose)

Notes on chemical resistance table

The chemical resistance table is a simplified rating tabulation based on immersion tests. Higher temperatures tend to reduce ratings. Since final selection depends on pressure, fluid, ambient temperature and many other factors not known to Parker Hannifin, no performance guarantee is expressed or implied.

The indications do not imply any compliance with standards and regulations and do not refer to possible changes of colour, taste or smell.

Some hose applications must take into account legal and insurance regulations. The chemical resistance indicated does not express or imply approval by certain institutions.

Chemical resistance does not imply low permeation rates. For gas applications, refer to Appendix 4. Note that hoses with coextruded core tube with Fluoropolymer inner liner are not recommended for gas applications.

For fluids, not listed or for advice on particular applications, please contact Parker Hannifin, POLYMER HOSE DIVISION EUROPE in Lampertheim, Germany.

J

ISSUED: G. Ford	DAD	VED I					s	PEC:		
26. January 2010			Loopif				F		ES28	
M. Levin 20. Apr. 2021	Po	arkei lymer	Hannin Hose	Divisio	n Euro	on ope		U		
SUBJECT:	andling mainten	ance in	enection	and rena	ir of Park	- or Polyfie	, F	AGE:		
Illou ucuollo ioi in	BLACK EAGL	E hose	s and ass	emblies	ΠΟΓΑΙΝ	erroryne	**	15 of	43	
				N		М		Р		
Chemical	Concentration	20°C (68°F)	40°C (104°F)	60°C (140°F)	90°C (194°F)	125°C (257°F)	23°C (73°F)	°C 100°C 150°C 3°F) (212°F) 302°F		
Acetaldehyde		A	В	х	х	А	А	А	-	
Acetic Acid	5%	A	А	А	В	E	А	А	-	
Acetic Acid	10%	A	А	В	Х	E	А	А	-	
Acetic Acid	50%	В	Х	Х	Х	E	А	A (75°C)	-	
Acetic Anhydride		В	Х	Х	Х	E	-	-	-	
Acetone	Pure	А	А	В	Х	А	А	А	-	
Acetylene		А	А	А	-	А	А	А	-	
Air		А	А	А	А	А	А	А	А	
Aluminium Sulphate	Saturated Solution	А	A	А	А	A	А	-	-	
Ammonia	Liquid or Gas	А	А	А	х	А	А	А	А	
Ammonium Chloride		А	А	А	-	А	А	А	-	
Ammonium Hydroxide	Concentrated	A	A	A	A	A	A	A (80°C)	-	
Ammonium Nitrate		А	А	А	А	А	А	А	-	
Ammonium Sulphate	Saturated Solution	A	A	В	-	E	A	-	-	
Amyl Acetate		А	А	А	В	А	А	А	-	
Aniline		В*	Х	Х	Х	E	А	В	-	
Asphalt		А	А	А	А	А	-	-	-	
Barium Chloride	Saturated Solution	А	A	А	А	A	A	-	-	
Barium Formate	Saturated Solution	А	В	x	x	-	А	-	-	
Benzaldehyde		Α	В	х	х	Е	А	A (60°C)	-	
Benzene		А	A*	В	Х	E	А	А	-	
Benzyl Alcohol		В	Х	Х	Х	E	А	A (80°C)	-	
THIS DOCUMENT AND THE INFOR NOT BE COPIED OR DISCLOSED AND ALL FURTHER USE DISCONT PARKER SYSTEMS OR COMPONE TESTING FOR THE FINAL SELECT WARNING REQUIREMENTS OF TH RIGHTS RESERVED.	MATION IT CONTAINS IS C FO OTHERS OR USED FOR TINUED AT PARKER'S REQ INTS CAN CAUSE DEATH, TON OF PARKER SYSTEM HE INTENDED APPLICATION	ONFIDENTIA ANY PURPO UEST. THE R PERSONAL II AND COMPO N ARE MET. (L AND PROPRI SE OTHER THA ECIPIENT OF T NJURY AND PR NENTS AND AS COPYRIGHT PA	IETARY TO PAR AN CONDUCTIN THIS DOCUMEN COPERTY DAM/ SSURING THAT RKER. YEAR O	RKER-HANNIFIN IG BUSINESS V T IS ADVISED 1 AGE, AND IS SC ALL PERFORM IF COPYRIGHT	I CORPORATIO /ITH PARKER, J THAT IMPROPE DLELY RESPON IANCE, ENDUR IS THE YEAR(S	ON AND ITS A AND MUST B R SELECTIO ISIBLE THRO ANCE, MAIN INDICATED	AFFILIATES ("PA E RETURNED C N OR IMPROPE OUGH ITS OWN A TENANCE, SAFI O ON THIS DOCU	IRKER"), MAY IR DESTROYED R USE OF ANALYSIS AND ETY AND JMENT. ALL	

ISSUED: G. Ford 26. January 2010	PA	RKER		SPEC: PFDE-	ES28				
M. Levin 20. Apr. 2021	Р	olyme	r Hos	e Divis	ion Eu	rope		U	
Instructions for ha	andling, mainte BLACK EA	enance, i GLE hos	nspection es and a	on and re issemblie	pair of Pa	arker Poly	/flex	PAGE: 16 of	i 43
Bleach		В	х	Х	Х	E	А	A	-
Bromine		х	х	X	Х	В	х	х	х
Butane		A	A	A	А	A	А	-	-
Butyl Acetate		A	A	A	В	A	А	A	-
Butyl Alcohol (Butanol)		A*	В	x	x	E	A	A	-
Calcium Arsenate		А	Α	A	-	A	-	-	-
Calcium Bromide		A	A	A	В	-	-	-	-
Calcium Chloride	Saturated Solution	A	A	A	A	A	A	A	-
Calcium Nitrate		A	A	A	-	A	А	-	-
Camphor		A	-	-	-	A	А	-	-
Carbonated Water		A	A	A	A	A	-	-	-
Carbon Dioxide		A	A	A	A	A	А	-	-
Carbon Disulphide		A*	B*	В	X	A	А	A	-
Carbon Monoxide		A	A	A	A	A	А	A	A
Carbon Tetrachloride		x	x	x	x	A	A	A	-
Cement Slurries		A	A	A	-	A	-	-	-
Chlorinated Solvents		В	x	X	X	E	А	A/B	-
Chlorine		x	x	X	X	E	х	x	х
Chloroform		В	x	X	X	E	А	A	-
Chromic Acid	40%	х	х	X	Х	E	А	B (80°C)	-
Citric Acid	Saturated Solution	A	A	В	x	E	A	A	-
Copper Sulphate		A	A	A	A	A	А	A	-
Crude Oil		A	A	A	В	A	А	-	-
Cyclohexane		A	Α	A	В	A	А	A	-
Cyclohexanol		A	В	X	Х	E	А	A	-
Cyclohexanone		A	В	X	Х	E	А	A	-
Decalin		A	A	A	В	A	А	-	-
Diacetone Alcohol		A	A	В	x	E	-	-	-

NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTUNED AT PARKERS REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT IMPROPER SELECTION OR IMPROPER USE OF PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE, AND IS SOLELY RESPONSIBLE THROUGH ITS OWN ANALYSIS AND TESTING FOR THE FINAL SELECTION OF PARKER STELEMENT STELEMENT AND PROPERTY DAMAGE, AND IS SOLELY RESPONSIBLE THROUGH ITS OWN ANALYSIS AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT, ALL RIGHTS RESERVED.

ISSUED:								SPEC:	
G. Ford 26. January 2010	PA	RKER	ENGI	NEERII	NG MA	NUAL		PFDE-	ES28
REVISED / CHECKED	\neg	Parke	r Hanr	vifin Cc	proorat	ion		REVISION	
M. Levin 20. Apr. 2021	P	olyme	r Hose	e Divis	ion Eu	rope		U	J
SUBJECT:	ndling maint			and rec	- oir of Pa	-kor Boly	-104	PAGE:	
Instructions for a	BLACK EA	GLE hos	es and a	ssemblie:	S	rker roiy	tiex	17 of	43
L	_ 								
Diammonium Phosphate	T	A	A	В	-	Е	- 	-	-
Dichloroethylene		В	х	Х	Х	E	T	-	-
Diesel		A	Α	А	Α	А	A	A	-
Diester Oils		A	А	А	В	А	-	-	-
Diethanolamine	20%	A	A*	A*	В	А	-	-	-
Diethyl Ether		Α	-	-	-	E	А	A	-
Dioctyl Phosphate		А	А	A	В	-	-	-	-
Dioctyl Phthalate		Α	А	A	В	А	А	-	-
Ethanol	Pure	A*	В	В	x	E	А	A	-
Ethyl Acetate		Α	Α	A	T	А	A	A (50°C)	-
Ethylene Chlorhydrin		x	х	х	x	E	А	-	-
Ethylene Oxide		А	А	X	X	E	А	A (80°C)	-
Fatty Acid Esters	<u> </u>	Α	Α	А	Α	А	1	- <u> </u>	-
Fluorine		x	х	Х	Х	х	х	х	Х
Formaldehyde	Technical	Α	В	Х	Х	E	А	A	-
Formic Acid	10%	х	х	x	x	E	В	В	-
Freon		А	T	T		А	А		-
Furfuryl Alcohol		А	A*	В	х	E	А	A	-
Gas (Coal)		А	А	1		А	А	-	-
Gasoline (High Octane)		А	А	A*	-	A	А	А	-
Glucose		А	А	А	А	А	А	-	-
Glycerine	Pure	Α	Α	В	Х	E	А	A	-
Heptane		Α	Α	A*	1-	А	А	A	-
Hexane		А	A	А	A	А	А	A (60°C)	-
Hydraulic Fluid (petroleum base)		А	А	А	А	A	А	A	-
Hydraulic Fluid (phosphate ester base)		A	A	A	В	A	A	-	-
THIS DOCUMENT AND THE INFO NOT BE COPIED OR DISCLOSED AND ALL FURTHER USE DISCO PARKER SYSTEMS OR COMPON	IRMATION IT CONTAINS I TO OTHERS OR USED F NTINUED AT PARKER'S F NENTS CAN CAUSE DEA'	IS CONFIDENT OR ANY PURF REQUEST. THE TH, PERSONA	IAL AND PRO POSE OTHER RECIPIENT C LINJURY AND	PRIETARY TO F THAN CONDUC)F THIS DOCUM) PROPERTY D	PARKER-HANN TING BUSINES IENT IS ADVISE AMAGE, AND IS	IFIN CORPORA S WITH PARKE ED THAT IMPRO S SOLELY RESI	TION AND IT R, AND MUS OPER SELEC PONSIBLE TH DURANCE M	IS AFFILIATES ("PA IT BE RETURNED C ITION OR IMPROPE HROUGH ITS OWN	IRKER"), MAY DR DESTROYED R USE OF ANALYSIS AND

1 CO ING TWT INE FINAL SELECT UN UP PARKER STSTEM AND COMPONENTS AND ASSURING THAT ALL PERFORMANCE, ENDIRANCE, MAINTENANCE, SAFETY AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET, COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT. ALL RIGHTS RESERVED.

J

ISSUED: SPEC:										
G. Ford 26. January 2010	PAR	KER	ENGIN	EERIN	G MAN	UAL		PFDE-ES28		
REVISED / CHECKED	P	arker	Hannif	in Cor	poratic	n		REVISION		
M. Levin	Po	lvmer	Hose	Divisio	n Euro	ppe		U		
20. Apr. 2021 SUBJECT:		.,				- F -		PAGE:		
Instructions for ha	andling, mainter BLACK EAG	nance, in LE hose	spection s and ass	and repa emblies	ir of Park	er Polyfle	x	18 of	43	
Hydraulic Fluid										
(water base)		A	A	A	А	А	-	-	-	
Hydrochloric Acid	15%	А	В	х	х	E	А	А	-	
Hydrochloric Acid	28%	Х	Х	Х	Х	E	A	A	-	
Hydrochloric Acid	37%	Х	Х	Х	Х	A	A	-	-	
Hydrofluoric Acid	3%	A	В	Х	Х	E	В	-	-	
Hydrogen		A	A	A	A	А	A	-	-	
Hydrogen Peroxide	20%	А	В	-	-	E	A	А	-	
Iron Trichloride	Saturated Solution	А	А	A	-	A	A	В	-	
Isocyanates		В	Х	Х	Х	E	-	-	-	
Isooctane		А	А	А	А	А	A	-	-	
Isopropyl Alcohol		А	В	х	Х	Е	А	Α	-	
Kerosene		А	А	A*	В	А	А	A (85°C)	-	
Lactic Acid		А	А	А	В	E	А	А	-	
LP Gas		А	А	А	А	E	-	-	-	
Magnesium Chloride	50%	А	А	А	А	А	А	А	-	
Mercury		А	А	А	А	А	A	А	-	
Methane		А	А	А	А	E	A	A	А	
Methanol	Pure	А	В	В*	Х	E	A	A	-	
Methyl Acetate		А	А	А	-	А	A	-	-	
Methyl Bromide		А	х	Х	Х	E	A	-	-	
Methyl Cellosolve		А	А	А	Х	А	-	-	-	
Methyl Chloride		А	Х	Х	Х	E	A	-	-	
Methylene Chloride		х	х	Х	х	А	А	-	-	
Methyl Ethyl Ketone (MEK)		А	А	В	х	-	А	A (80°C)	X (200°C)	
Methyl Isobutyl Ketone		А	А	В	x	E	A	-	-	
Methyl Sulphate		A	В	-	-	E	-	-	-	
Monochlorobenzene		В	х	х	х	A	A	A (75°C)	-	

THE DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNISH OGRPORATION AND ITS AFFLIATES ("PARKER-), MAY NOT BE COPIED OR DISCLOSED TO OTHERS ON USED FOR ANY PUMPOSE OTHER THAIN GONDUCTING BUSINESS DIVITY ARKER, AND MUST DE RETURNED OR DESTROYED ON ALL EURTHER USE DISCOVENDES AF PARKERS PROVENT HER REPORTER FOR THE DOCUMENT DAVISED THAT YRAR RELEAD ON DESTROYED PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE, AND IS SOUPONENTS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE, AND IS SOUPONENTS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE, AND IS SOUPONENTS CAN CAUSE DEATH, PERSONAL INJURY TO PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT. AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT. ALL

maintenance, CK EAGLE hos A A A A A A A A A A A A A A A B B A A A B B B B B B B B B B B	A A A A A A A A A A A A A A A A X X X X	A* A A A A A A A A A A A A A B B B C X	Ppair of P Passer X - B A A X X A B B B B B X X X X X	E A A A E X A E A A E A A E A A E A E	yflex A A A A A A A A A A A A A A A A A A A	PAGE: 19 of A A A - X B (80°C) - A A A A - B B	43 B (200°C) - - X - - X - - - - - - - - - - - - -
A A A A A A A A A A A B B B B B B B	A A A A X X A A A A A A X X X	A* A A A A X X A A A B B B X X	X - B A X X A B B B X X X X X	E A A E X A E A A E A A E A E C	A A A A A A A A A A A A A A	A A A - X B (80°C) - A A A A B B	B (200°C) - - - X - - - - - - - - - - - - -
A A A A X B A A A A A A A B B B B B B	A A A X X A A A A A A A A A A A X X X X X X X X	A* A A A X X A A A A B B X X X X X X X X	X B A X X X A B B B X X X X X X X X X X X	E A A E X A E A A E A A E A E	A A A A A A A A A A A A A A	A A A - X B (80°C) - A A A A A B B	B (200°C) - - - X - - - - - - - - - - - -
A A A X B A A A A A A B A B B B B B B B B B B B B	A A A X X A X X	A A A X X A A A A B B B X X		A A E X A E A E A E A E A E A E A E A E A	A A A X A A A A A A A A	A A - X B (80°C) - A A A A B B	- - - X - - - - - - - - -
A A X B A A A A A A B B B B B	A A X A A A A A A A A A A A A A X X X X X	A A X X A A A B B B X X	B A X A B B X X X	A E X A E A E A E A E A E A E A	A A X A A A A A A A A	A - X B (80°C) - A A A A - B	- - X - - - - - - - -
A X B A A A A A A B B B B	A X X A A A A A A X X	A X X A A A B B B X X	A X X A B B B X X X X X	E X A E A A E A E A E	A X A A A A A A A A	- X B (80°C) - A A A A - A B	- X - - - - - - -
X B A A A A A A B B B B B	X X A A A A A X X X	X X A A A B B B X X	X X A B B X X X X X	X A E A A E A E E	X A A A A A A A	X B (80°C) - A A A A - B	X - - - - - - -
B A A A A B B B B B	X A A A A A A X X	X A A A B B B X X	X A B X X X X X	A E A A E A E E	A A A A A A A	B (80°C) - A A A A A - B B	- - - - -
A A A A A B B B B B	A A A A A X X	A A A B B X X	A B X X X X	E A A E A E	A A A A A A	- A A A A B	- - - -
A A A A B B B B B	A A A A X X	A A B B X x	B B X X X X	A A E A E	A A A A A	A A A - B	-
A A A B B B B	A A A X X	A B B X x	B X X X X	A E A E	A A A A	A A - B	
A A B B B B	A A X X	B B X x	X X X	E A E	A A A	A - B	-
A B B B	A X X	B X X	X X	A E	A A	- B	-
B B B	X X	X	x	E	A	В	-
B	х	×					1
В		~	X	В	А	A	-
	x	х	x	E	A	A	-
A	A	A	В	E	A	A (80°C)	-
X	х	X	x	E	В	x	х
A	В	X	х	E	A	A	A
В	X	X	x	E	А	A	-
A	A	В	x	E	А	-	-
A	A	В	х	E	A	A	-
A	В	x	x	E	А	A (80°C)	-
A*	B*	Х	х	E	A	A	-
x	x	x	x	E	А	A (60°C)	-
A	A	A	A	А	А	A	-
A	A	Α	A	А	A	-	-
A	В	x	x	А	А	-	-
	B A A A A A A A A A A A ONTANE IS CONTIDEN R USED FOR ANY PUR RUSED FOR ANY PUR RUSE	B X A A A A A A A B A B A* B* X X A A A A A B ONTANS IS CONFIDENTIAL AND PR ONTANS IS CONFIDENTIAL AND PR DISE OF ANY PURPOSE OTHER RIGER'S REQUEST. THE RECEPTENT INFERENCES OTHER	B X X A A B A A B A A B A A B A B X A B X A B X A B X A B X A A A A A A A A A A A A A B X A A A A A A A B X ONTAINS IS CONFERENTIAL AND PROPERTY OF THIS DOLU SUBE PORY AND PROPERTY OF THIS DOLU WIGED FOR ANY FURPOSE ONLE INLIVE NO PROPERTY OF THIS DOLU SUBE PORY AND PROPERTY OF THIS DOLU	B X X X A A B X A A B X A A B X A B X X A B X X A B X X A B X X A B* X X X X X X A A A A A A A A A A A A A A A A A B X X ONTAMES IS CONFIDENTIAL AND PROPERTY CONFIDENTIAL AND PROPERTY CONFIDENTIAL SUCCEMENT IS ADDRUGGE AND UNDERCEMENT AND REQUEST. THE RECIPENT THAN CONDUCTION BUSING RECEMENT AND PROPERTY CONSUL NULLY AND RECEMENT AND R	B X X X E A A B X E A A B X E A A B X E A B X E A B X X E A B X X E A* B* X X E X X X X E A A A A A A A A A A A A A A A A A A A A A B X X A A B X X A A B X X A	B X X X E A A A B X E A A A B X E A A A B X E A A B X X E A A B X X E A A B X X E A A* B* X X E A X X X X E A A A A A A A A A A A A A A A A A A A A A B X X A A A A A B X X A A A A WISED FOR AWERDERINE THAN CONDECORED BLANDERS SELEX PREOPERT THA	B X X X E A A A A B X E A - A A B X E A - A A B X E A A A B X X E A A A B X X E A A A B X X E A A X X X E A A X X X X E A A A A A A A A A A A A A A A A A A A A A A A A A A B X X A A A - Contaxisi

J

Parker

J

ISSUED: SPEC:											
G. Ford 26. January 2010	PAR	KER	ENGIN	EERIN	g man	UAL		PFDE-ES28			
REVISED / CHECKED	P	arker	Hanni	fin Cor	poratio	n		REVISION			
M. Levin	Po	lvmer	Hose	Divisio	n Euro	ppe		U			
20. Apr. 2021		-iyinio.		Pinolo				PAGE:			
Instructions for ha	Indling, mainter BLACK EAG	iance, in LE hose	spection	and repa semblies	ir of Park	er Polyfle	x	20 of	43		
Pyridine	Pure	В	Х	Х	Х	E	А	A (80°C)	-		
Sea Water		А	А	А	А	А	А	A	-		
Sodium Acetate	Saturated Solution	A	В	х	x	E	A	A	-		
Sodium Borate		А	А	А	-	А	А	-	-		
Sodium Carbonate	Saturated Solution	А	А	В	х	E	А	A (80°C)	-		
Sodium Chloride	Saturated Solution	А	А	A	A	A	А	А	-		
Sodium Hydroxide	50%	А	В	х	Х	E	А	А	А		
Sodium Hypochlorite	Concentrated	в	х	х	х	E	А	-	-		
Sodium Hypochlorite	Dilute Commercial	A	В	х	х	E	А	А	-		
Sodium Sulphide		А	А	В	-	E	А	А	-		
Stearic Acid		А	А	А	В	А	А	-	-		
Stearin		А	В	В	-	E	-	-	-		
Styrene Monomer		A	A*	-	-	E	А	-	-		
Sulphur		A	A	-	-	A	А	А	-		
Sulphur Dioxide		В	х	х	х	А	А	A	A		
Sulphur Hexafluoride Gas		A	A	А	A	A	A	-	-		
Sulphuric Acid	1%	A	В	В	х	E	А	-	-		
Sulphuric Acid	10%	Α	В	х	х	E	A	B (80°C)	-		
Sulphuric Anhydride		В	х	х	х	E	А	-	-		
Tartaric Acid		A	A	A	В	А	А	А	-		
Tetrahydrofuran (THF)		A	A	В	х	E	A	В	-		
Toluene		A	A*	В	В	E	А	А	-		
Tributyl Phosphate		A	A	A	В	A	A	-	-		
Trichloroethane		В	х	х	Х	E	А	A (75°C)	-		
Trichloroethylene		В	х	х	х	E	А	A (80°C)	-		
Tricresyl Phosphate		А	А	А	В	А	В	-	-		
THIS DOCUMENT AND THE INFOR	MATION IT CONTAINS IS (CONFIDENTIA	L AND PROPR	IETARY TO PAP	RKER-HANNIFI	ORPORATIO	N AND II	'S AFFILIATES ("PA	RKER"), MAY		

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANIUM CORPORATION AND ITS AFFLIATES ("PARKER"), MAY NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST, THE RECIPIENT OF THIS DOCUMENT IS ADVISED WITH PARKER, AND MUST BE RETURNED OR DESTROYED THIS DOCUMENT AND THE PARKER'S REQUEST, THE RECIPIENT OF THIS DOCUMENT IS ADVISED WITH PARKER, AND MUST BE RETURNED OR DESTROYED TESTING FOR THE FIAL SELECTION OF MARKER SYSTEM AND CONDUCTING SAUGURAL LEVERTORMANCE. EXPERTS WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT, ALL RIGHTS RESERVED.

ISSUED:								SPEC:		
G. Ford	PAF	≀KE R	ENGIN	EERIN	G MAN	UAL		PFDE-	ES28	
26. January 2010		kor	Henni	fin Cor				REVISION		
M Levin	r	arker	Hanni		poratio	n		REVIDION		
20. Apr. 2021	PC	Jymer	Hose	Divisio	n Eurc	ре		U		
SUBJECT:								PAGE:	-	
Instructions for ha	ndling, mainter BLACK EAG	LE hose	s and as	and repa semblies	ir of Park	er Polytie	•x	21 of	43	
Triphenyl Phosphate		A	A	В	T	A	Ī		-	
Trisodium						,				
Phosphate		А	А	А	А	А	-	-	-	
Turpentine		A	A	В	-	А	А	-	-	
Urea		А	А	В	В	E	А	A	-	
Uric Acid		А	A	A	В	А	А	-	-	
Water		Α	A	A	A	А	А	A	-	
Water Glycols, e.g.		1								
Oceanic HW fluids ^{a)}										
Transaqua HT/HT2 ^{b)}							Ι.			
Brayco Micronic SV		A	A	A	В	A	А	A	-	
fluids ^{b)}										
a) registered trademark or MacDermid Group										
b) registered trademark or castrol		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	- 4 -		
Xylene		A	A*	В	В	E	А	B/X	-	
Zinc Bromide		Α	А	Α	-	-	-	-	-	
Zinc Chloride	Saturated			5	v	e .	<u>,</u>	A (00%C)		
	Solution	A	А	в	^	E	А	A (80 C)	-	
I		-J				1				

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-MANNERIL CORPORATION AND ITS AFFILATES ("PARKER") MAY NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONJUCTING DUDANES MURT BARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FUTHER USE DISCONTINED AT PARKER'S REQUEST. THE REOPERAT OF THE DOCUMENT IS ADVISED THAT IMFORMES RELECTOR ON IMPORTED AND ARE USE OF PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE, AND IS SOURD THAT IMFORMES HIELD ON ON ANALYSIS AND TESTING FOR THE FINAL SELECTION OF PARKER SYSTEM AND COMPONENTS AND ASSUMNT OTHAT ALL PERFORMANCE, EMPONDENCE, MARTINY AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT. ALL RIGHTS RESERVED.

J

G. Ford

SUBJECT

26. January 2010 REVISED / CHECKED M. Levin 20. Apr. 2021

PARKER ENGINEERING MANUAL

Parker Hannifin Corporation Polymer Hose Division Europe

PFDE-ES28 REVISION U PAGE: 22 of 43

SPEC

Instructions for handling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies

Appendix 2: Data for tensile loading and weights of Polyflex hoses

Note that all below values of tensile forces include the own weight of the hoses.

The values below have been established based on lab testing (tensile test followed by impulse testing) of short hose assemblies. At the tensile forces stated below the hoses will not elongate more than 30% at the area of highest load (topside). Pressurized hose can take higher tensile load, it will elongate less.

044014 001/00	Pressure [bar]	0	100	300 and above	
2448N-32V8U	Max. tensile force [kN]	30	50	100	
2580N-32V80	Pressure [bar]	0	100	300 and above	
	Max. tensile force [kN]	30	50	100	
2648N-32V80	Pressure [bar]	0	100	300 and above	
	Max. tensile force [kN]	30	50	100	
2240N 481/80	Pressure [bar]	0	100 and above		
224011-46760	Max. tensile force [kN]	30	50		
2440N 40\/90	Pressure [bar]	0	100	300 and above	
2440N-48V80	Max. tensile force [kN]	60	100	200	
2640N 481/80	Pressure [bar]	0	100	300 and above	
2640N-48V80	Max. tensile force [kN]	60	100	200	

In the table below some figures are put together for information

	Hose ID [mm]	Hose OD [mm]	Hose weight in air empty [kg/m]	Hose weight in air, full of water [kg/m]	Hose weight in water empty [kg/m]	Hose weight in water full of water [kg/m]
2448N-32V80	50,5	80,5	8,5	10,5	3,3	5,3
2580N-32V80	50,5	84,5	9,4	11,5	3,7	5,7
2648N-32V80	50,0	86,0	12,1	14,1	6,2	8,1
2240N-48V80	75,0	114,0	11,5	16,0	1,1	5,6
2440N-48V80	75,0	122,0	18,7	23,2	6,7	11,3

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIFIN CORPORATION AND ITS AFFILIATES ("PARKER"), MAY NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTUNED AT PARKERS REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT IMFORPE SELECTION OR IMPOPERE VIEW PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONALI MURY AND PROPERTY DAMAGE, AND IS SOLULY RESPONSIBLE THROUGH ITS OWN ANALYSIS AND TESTING ORT THE FINAL SELECTION OF PARKER SYSTEM AND COMPONENTS AND ASSUMING THAT ALL PERFORMANCE, ENDURANCE, MAIPTY AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT, ALL RIGHT'S RESERVED.

Technical Information

PFDE-ES28

Technical Information

PFDE-ES28

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIFEN CORPORATION AND ITS AFFLIATES ("PARKER"), MAY NOT BE COPIED OR DISCOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED WITH PARKER, AND MUST BE RETURNED OR DESTROYED ADVIS DESTROYED BUSICONTONED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SELECTION OR IMPORTE USE OF DESTROYED BUSICONTONED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SELECTION OR IMPORTE USE OF DESTROYED BUSICONTONED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SELECTION OR IMPORTE USE OF DESTROYED BUSICONTONED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SELECTION OR IMPORTE ALL RECIPIENT ADVISED AND ADVISED ADVISE

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIFIN CORPORATION AND ITS AFFLIATES ("PARKER"). MAY NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUISINESS WITH PARKER, AND MUST BE RETURINED OR DESTROYED AND ALL FURTHER USE DISCONTUNED AT PARKERS REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT IMPROPER SELECTION OR IMPROPER USE OF PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONALI MURY AND PROPERTY DAMAGE, AND IS SOMPONENTS CAN CAUSE DEATH, PERSONALI MURY AND PROPERTY DAMAGE, AND IS SOMPONENTS CAN CAUSE DEATH, PERSONALI MURY AND PROPERTY DAMAGE, AND IS SOMPONENTS CAN COMPONENTS AND ASSUMENT THAT ALL PERFORMANCE, ENDURANCE, MANTENNACE, SAFETY AND MARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT, ALL RIGHTS RESERVED.

G. Ford 26. January 2010	PARKER ENGINEERI	NG MANUAL	PFDE-ES28
EVISED / CHECKED M. Levin	Parker Hannifin Co	orporation	REVISION
20. Apr. 2021	Polymer Hose Divis	ion Europe	U
Instructions for hand	lling, maintenance, inspection and re BLACK EAGLE hoses and assemblie	pair of Parker Polyflex es	36 of 43
	E ACASTR		TISAIC
'HIS DOCUMENT AND THE INFORMA IOT BE COPIED OR DISCLOSED TO (IND ALL FURTHER USE DISCONTINU 'ARKER SYSTEMS OR COMPONENT! 'ESTING FOR THE FINAL SELECTION	ION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO THERS OR USED FOR ANY PURPOSE OTHER THAN CONDU ED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCU CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY D OF PARKER SYSTEM AND COMPONENTS AND ASSURING T	PARKER-HANNIFIN CORPORATION AND I CTING BUSINESS WITH PARKER, AND MUS MENT IS ADVISED THAT IMPROPER SELEG MANAGE, AND IS SOLELY RESPONSIBLE TI HAT ALL PERFORMANCE, ENDURANCE, M B OC CORPURATION VERSION	TS AFFILIATES ("PARKER"), MA ST BE RETURNED OR DESTROY STION OR IMPROPER USE OF HROUGH ITS OWN ANALYSIS A IAINTENANCE, SAFETY AND TE ON THE DOCUMENT, ALL

ISSUED:							SDEC:				
G. Ford	PAF				IANUAL		PFDE-	ES28			
REVISED / CHECKED	P	Parker	Hannifin	Corpo	ration		REVISION				
M. Levin 20. Apr. 2021	Pc	olymer	Hose Di	vision I	Europe		U				
UBJECT: Instructions for handling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies 37 of 43											
Appendix 4: Rec	ommenda	ations	for use	of Parke	er Polyfle	ex Bla	ck Eagle	hoses			
with gas and sou	ır gas.				-		_				
4.1. Use of Black	Eagle hose	es with g	gas.								
Please refer to Appendix	1 "Chemical	compatib	ility table"	for chemica	al compatibil	ity of co	e tube mat	erials with			
gases. However, good c	hemical comp	atibility is	s not the o	nly parame	ter to consi	der for g	as use. The	other ke			
parameter is permeabil	ity. Permeati	on could	lead to di	fferent po	tential failu	re mode	s. One is h	ose cove			
blistering and another is	core tube co	llapse du	e to rapid g	as decomp	ression and/	'or gas tr	apped unde	r pressur			
between hose layers.											
Permeability is defined a	is the ability o	of a subst	ance to allo	w another	substance to	nass th	rough it Fou	r a circula			
tube, it is calculated per	the below for	mula.				pubb th	ougn ni i oi	u ch culu			
tube, it is calculated per		inuia.									
V=PW*A*T*P/S	3										
v - volume of gas, in cm PW - permeability coeff	°, Which diffus icientcm ³ *m	ses throug m/m²*day	gn v*har seet:	able below							
A - is the area across wh	ich the gas di	ffuses. in	m²	DIC DCIOW							
S - thickness of tube, in	mm	,									
T - diffusion time, in day	s										
P - pressure difference a	cross the tub	e, in bar									
PW values for various g	ases.										
cm3*mm/m2*d*bar		N2	Air	02	CO2	H2	He	CH4			
PA11, methanol washe	d	5	7	21	60	130		6			
PA12		9	13	43	105	900	500	14			
POM		2	3	4	20	80					
These guidance values a Higher temperatures sig Actual behavior may va The below simplified esti area of Polyflex hoses.	are taken from gnificantly inc ry considerab imation formu	n literatu rease per Ily becaus Ila is a res	re. They are meation ration ration of variation ult of recald	based on r ses. ons in proce ulations ba	coom tempe essing. sed on the ty	rature. ypical cor	e tube thick	ness and			
V=K* PW*P	3	a	• ان برمام م		han a t						
 v - volume of gas, in cm K – recalculation coeffic 	° per core tub ient for area a	e meter p and thickn	er day, which ess. see tab	n aintuses i le below	Inrougn						
PW - permeability coeff	icient, cm ³ *m	m/m²*d*	bar, see tab	e above							
P - pressure difference a	cross the tub	e, in bar									
K coefficients for hose size	zes										
THIS DOCUMENT AND THE INFORMAT NOT BE COPIED OR DISCLOSED TO O AND ALL FURTHER USE DISCONTINU PARKER SYSTEMS OR COMPONENTS TESTING FOR THE FINAL SELECTION WARNING REQUIREMENTS OF THE IN RIGHTS RESERVED.	TION IT CONTAINS IS THERS OR USED FOI ED AT PARKER'S REG CAN CAUSE DEATH OF PARKER SYSTEM TENDED APPLICATION	CONFIDENTIAL R ANY PURPOS QUEST. THE RE , PERSONAL IN I AND COMPON ON ARE MET. C	L AND PROPRIETA SE OTHER THAN C ECIPIENT OF THIS JJURY AND PROPE NENTS AND ASSU OPYRIGHT PARKE	RY TO PARKER-I ONDUCTING BUS DOCUMENT IS AI RTY DAMAGE, A RING THAT ALL P R. YEAR OF COP	HANNIFIN CORPOR SINESS WITH PARK DVISED THAT IMPR ND IS SOLELY RES PERFORMANCE, EN YRIGHT IS THE YE	ATION AND IT ER, AND MUS OPER SELEC PONSIBLE TH DURANCE, M AR(S) INDICA	S AFFILIATES ("P/ T BE RETURNED (TION OR IMPROPE IROUGH ITS OWN AINTENANCE, SAF FED ON THIS DOCI	ARKER"), MAY OR DESTROYE R USE OF ANALYSIS AN ETY AND JMENT. ALL			

ISSUED SPEC G. Ford PARKER ENGINEERING MANUAL PFDE-ES28 26. January 2010 REVISION REVISED / CHECKED Parker Hannifin Corporation M L ovin **Polymer Hose Division Europe** U 20. Apr. 2021 SUBJECT PAGE: Instructions for handling, maintenance, inspection and repair of Parker Polyflex 38 of 43 **BLACK EAGLE hoses and assemblies** -04 -06 -05 -08 -12 -16 -20 -24 -32 -48 0.017 0.019 0.021 0.027 0.035 0.040 0.044 0.048 0.053 0.048 Example: how much CH4 would permeate through core tube of a 2" hose at 10000 psi. V=0,053*6*690=219,42 cm³ per core tube meter per day As previously mentioned, all the calculated values can be used for estimation only. Permeation coefficients are just literature values for lab conditions, permeation through hose cover is not considered. As an example, permeation of CH4 at 1 meter sample of 2" hose has been measured at 170 bar and ambient temperature and the result is represented on the below graph. The above calculation would result in a value of V=0,053*6*170=54,06 cm³ per core tube meter per day, which would mean 2,25 cm³ per hour, and only approx. 0,57 cm³ per hour have been measured. RA 50 y = 0.5676x + 0.2755 40 leaked 30 20 20

 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{10}$ $\frac{1}{20}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{40}$ $\frac{1}{50}$ $\frac{1}{60}$ $\frac{1}{70}$ $\frac{1}{80}$ $\frac{1}{90}$ $\frac{1}{100}$

Note that in all previous discussions gas which permeates through the core tube was mentioned. Obviously, there is one more barrier – hose cover. If cover is pin-pricked, gas will easily go through it and no issues will occur. But pin-pricking is not acceptable for subsea service as the reinforcement wires will corrode. In addition, collapse resistance of hose would be compromised. For land based operations, all Parker Polyflex hoses may be pin-pricked.

Pin-pricking is not required on hoses with Colorgard. Performance of those hoses with gas has been confirmed by several tests. Test summary is provided below.

Without pin-pricking, gas will also have to permeate though the hose cover. The formula for calculation is the same as for core tube, only other permeability coefficients shall be used. Parker hoses are designed in the way that cover material has higher permeability coefficient compared to core tube, so more gas can permeate though the cover. In addition, area of permeation is larger. Thick cover is rigid enough to withstand any possible pressure build up in the hose annulus without building blisters.

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIEN CORPORATION AND ITS AFFLIATES ("PARKER"), MAY NOT BE CORPED OR DISCOGED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SUBJECTION OR IMPROPER USE OF AND ALL FURTHER USE DISCONTINUED AT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SUBJECTION OR IMPROPER USE OF THIS DISCONTINUE DAT PARKER'S REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SUBJECTION OR IMPROPER USE OF TESTING FOR THE FINAL SELECTION OF PARKER STSTEM AND COMPONENTS AND ASSURING THAT ALL PERFORMANCE, ENDURANCE, MAINTENNACE, SAFETY AND RENT'S RESERVED. MINIT'S RESERVED.

ISSUED:						SPEC:			
G. 26. Jan	Ford uary 2010	PARKER EN	IGINEER	ING MANUA	L	PFDE-ES28			
REVISED/CH M. 20. A	ECKED Levin pr. 2021	Parker Ha Polymer H	annifin C ose Divis	orporation sion Europe	1	REVISION			
SUBJECT:	PAGE: 39 of 43								
Hose	Test descrip	tion	Test gas	Test pressure	Test resu	lts			
type				and temperature					
2640N- 24V80	Pre-conditio soak in meth temperature pressure. Pressurize w hours. Decor Leave for 1 h Repeat this p times.	ning of hose: 24 hours and at room and atmospheric ith test gas mixture for 12 mpress at 20 bar/min. iour.	Gas mixture 97/3 CH4/CO2	740 bar (10730 psi) at 25°C	No signs of slitting an decompre been four tube at a X20.	of blistering or d no ession damage have ad on hose core magnification of			
2640N- 24V80	Pressurize w 24 hours. Decompress at least 12 ho cycle two mo	ith test gas at 345 bar for at 70 bar/min. Leave for ours. Repeat this pressure ore times.	N2	345 bar (5000 psi) at ambient temperature	No signs o slitting an decompre been four a magnifi	of blistering or Id no ession damage have Ind on hose cover at cation of X20.			
2640N- 32V80, also valid for 2580N- 32V80	Pressurize w 30 days and (decompress Pressure test 1035 bar for with water a Pressurize w 47 days and (decompress Pressure test 1035 bar for with water a Perform burst	ith test gas at 690 bar for slowly decompress sion rate not noted). t with water 20 times at 60 sec. Pressure test t 1035 bar for 1 hour. ith test gas at 690 bar for slowly decompress ion rate not noted). t with water 20 times at 60 sec. Pressure test t 1035 bar for 1 hour. st test.	Gas mixture 97/3/2 CH4/CO2/ H2S, water added to adjust system pH to 3,5- 3,8	690 bar (10000 psi) at 25°C	No deteri have beer testing, h minimum requirem	oration on cover n found. After all ose passed burst pressure ents.			
2440N- 32V80, also valid for 2448N- 32V80	Pressurize w for 7 days. T Methane at	ith Nitrogen at 170 bar hen pressurize with 170 bar for 45 days.	N2 and CH4	170 bar (2465 psi) at ambient temperature	No leakag and no ba cover. Thi about 910 the core t smooth a Hose expa 0.8 mm u bar, but t diameter decompre testing, it to return diameter.	es at connections illooning of the e bore inspection at D hours revealed that ube was perfectly nd circular. ands by about 0.6 to pon inflation to 175 here is no creep in thereafter. After assion at the end of took around 6 hours to its original outside			
THIS DOCUMEI NOT BE COPIE AND ALL FURT PARKER SYST TESTING FOR WARNING REQ RIGHTS RESER	THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIFIK CORPORATION AND ITS AFELIATES ("PARKER"), MAY NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONJUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTUNDE AT PARKER'S REQUEST. THE RECIPIENT OF THE DOCUMENT IS ADVISED THAT IMPROPRES ELECTION OR IMPORPE TURIES OF PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE, AND IS SOLVENT THAT UNFORMANCE, BARETY AND WARNING REQUIREMENTS OF THE INTENDED APARKER'S THE MAC MONOPONENTS AND ASSUMING THAT ALL PERFORMANCE, MEDIATION CONTAINCE, SARETY AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER. YEAR OF COPYRIGHT IS THE YEAR(S) INDICATED ON THIS DOCUMENT. ALL RIGHTS RESERVED.								

ISSUED:		SPEC:
G. Ford	PARKER ENGINEERING MANUAL	PFDE-ES28
EVISED / CHECKED	Parker Hannifin Corporation	REVISION
M. Levin 20. Apr. 2021	Polymer Hose Division Europe	U
Instructions for har	ndling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies	40 of 43
The situation changes, I difference across the co	nowever, if the hose is in subsea service. With external pressure app over becomes the limiting factor.	lied, pressure
Gas permeating throug pressure will build up th design and manufacturi depressurization this bu	h core tube could stay in the hose annulus between core tube and con- nere. Due to undefined volume of hose annulus of Polyflex hoses (th ing), it is not possible to calculate this pressure. And in case of quick uilt-up pressure could lead to core tube collapse.	over and some is is related to hose hose
With a hose deployed d varies over the hose ler has passed through the balance point. In this ca hrough cover only on t cover is higher. This cou change) could lead to th	own from a vessel, the situation becomes even more complicated. E gth. Lower part of the hose may have no gas permeation through co core tube is creeping up through annulus and starts leaving the hos se gas permeates through core tube on the whole length of hose bu he part length. Obviously, the volume of gas which needs to locally p id lead to blisters on the cover. Quick retrieving of hose (which mean he same phenomena.	External pressure over, all gas which e at the pressure t it permeates benetrate through ns external pressure
Parker Polyflex Black Ea and field experience, m hould be applied (max s also required by ISO 7 Gafety Guide 4400-B.1	gle hoses have been used in gas applications for many years. Based ultiple number of parameters shall be considered. Therefore, design operating pressure should not exceed 25% of minimum burst press 7751. If possible, guards of hose whip restrictors shall be used. Please	on the lab testing factor of min. 4:1 ure of the hose). This e also refer to Parker
4.2 Use of Parker	Polyflex hoses with sour gas.	
Core tube of most of Pa resistant to Hydrogen s degradation. Due to the gas this effect can be ne	Inker Polyflex Black Eagle hoses is made from Polyamide 11. This matulifide. Only aqueous solutions which are acidic can lead to an accele low acidity and generally low partial pressures of Hydrogen sulfide sglected.	erial is perfectly ration of polymer in crude oil or natura
Reinforcement wires ar sizes which reduce the : wires with H2S is limite very low due to low par of wet H2S at 690 bar (r SEM analysis of wires. N evidence of microcracks	e made of very high strength steel. Processing of these wires results susceptibility of the material to cracking that can be caused by H2S. d to the amount of gas which has permeated through the core tube. tial pressures. In addition, testing has been conducted: totally 77 da resulting in partial pressure of 13,8 bar (200 psi)) and subsequent bu <i>A</i> inimum burst pressure was achieved and in all the wire samples ex s or intergranular fracture, nor was there any evidence of embrittlen	in very small grain In addition, contact o This amount is also ys of exposure to 2% rst pressure test and amined, there was no nent.
More attention shall be imitations and requirer he fittings NACE compl	put to hose fittings. They are in direct contact to fluids and can be s nents are listed in ISO 15156 parts 1 to 3 (former NACE MR0175). Th liant?" cannot always be answered with yes or no.	ubjected to H2S. Som le usual question "are
The original and subseq pressure above which p also provided guidance were exceeded. In more resistant alloys, in term addition, requirements	uent editions of NACE Standard MR0175/ISO 15156 established limi recautions against sulfide stress cracking (SSC) were always conside for the selection and specification of SSC-resistant materials when t e recent editions, NACE MR0175 has also provided application limits s of environmental composition and pH, temperature and H2S partia for different equipment may be also different.	ts of H2S partial red necessary. They he H2S thresholds for some corrosion- al pressures. In
	ATION IT CONTAINS IS CONFIDENTIAL AND DOODDIETABY TO DADIED. MANNED CORDORATION AND D	TO ACCULATES ("DADVED") MA

THIS DOCUMENT AND THE INFORMATION IT CONTAINS IS CONFIDENTIAL AND PROPRIETARY TO PARKER-HANNIFIN CORPORATION AND ITS AFFILIATES ("PARKER"), MAY NOT BE COPIED OR DISCLOSED TO OTHERS OR USED FOR ANY PURPOSE OTHER THAN CONDUCTING BUSINESS WITH PARKER, AND MUST BE RETURNED OR DESTROYED AND ALL FURTHER USE DISCONTINUED AT PARKERS REQUEST. THE RECIPIENT OF THIS DOCUMENT IS ADVISED THAT MIRROPER SELECTION ON MIRROPER USE USE OF PARKER SYSTEMS OR COMPONENTS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE, AND IS SOLELY RESPONSIBLE THROUGH ITS OWN ANALYSIS AND TESTING FOR THE FINAL SELECTION OF PARKERS STEME AND CONVOLVENTS AND ASSUMBNIT THAT ALL PERFORMANCE, BARETY AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEARIS INDICATED ON THIS DOCUMENT, AND REAL THROUGH AND AND ALL PERFORMANCE, BARETY AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEARIS INDICATED ON THIS DOCUMENT, AND REAL PERFORMANCE, BARETY AND WARNING REQUIREMENTS OF THE INTENDED APPLICATION ARE MET. COPYRIGHT PARKER, YEAR OF COPYRIGHT IS THE YEARIS INDICATED ON THIS DOCUMENT.

ISSUED:							SPEC:					
G 26. Ja	i. Ford nuary 201	0 F	PARKE	RENG	INEERIN	IG MANUAL	PFDE-ES28					
REVISED / C M 20, A	HECKED . Levin Apr. 2021		Parke Polym	rporation on Europe	REVISION							
SUBJECT:	INBJECT: Instructions for handling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies 41 of 43											
The two The beha paramet a) chemi	The two important statements out of NACE MR01175/ISO 15156 shall be considered. The behavior of metallic materials in H2S-containing environments is affected by complex interactions of parameters, including the following: a) chemical composition, method of manufacture, product form, strength, hardness of the material and its local											
 variations, amount of cold work, heat-treatment condition, microstructure, microstructural uniformity, grain size and cleanliness of the material; b) H2S partial pressure or equivalent concentration in the water phase; c) chloride ion concentration in the water phase; d) acidity (pH) of the water phase; e) presence of sulfur or other oxidants; f) exposure to non-production fluids; g) exposure temperature; h) total tensile stress (applied plus residual); i) exposure time. WARNING — CRAs (corrosion-resistant alloys) and other alloys selected using ISO 15156 are resistant to cracking under all service. Below there is the list of Parker Polyflex hose fittings for some Black Eagle hoses and the information about use with H2S based on ISO 15156 requirements for "any equipment or component". Hose fittings are not explicitly listed in ISO 15156. Note that several fitting types with various materials may exist for the same hose.												
Hose type	Fitting series	Nipple material	Shell material	Max. Temp. °C (°F)	Max. partial pressure pH2S, kPa (psi)	Remarks						
2440N- 20V80	1xxLX-	Duplex 2205	316 or 316Ti	232 (450)	10 (1,5)	Any combination of chlor in situ pH occurring in pre environments is acceptal concentration is less than restrictions on pH2S and	ride concentration and oduction ble. If chloride n 50 mg/l, no pH are set.					
2640N- 24V80	1xx5X- Duplex 2205 Duplex 2205 232 (450) 10 (1,5) Any combination of chloride concentration an in situ pH occurring in production environments is acceptable. If chloride concentration is less than 50 mg/l, no restrictions on pH2S and pH are set. 6xx5X- 4340 Q&T 316 or 316Ti 0,3 (0,5) 0,3 (0,5) Normally, no special precautions are required for the selection of steels for use under these conditions, nevertheless, highly susceptible steels can crack.											
7100 000												
NOT BE COPI AND ALL FUR PARKER SYS TESTING FOR WARNING RE RIGHTS RESE	ED OR DISCLO ED OR DISCLO THER USE DIS TEMS OR COM THE FINAL SE QUIREMENTS RVED.	SEED TO OTHERS OR US CONTINUED AT PARKE PONENTS CAN CAUSE ELECTION OF PARKER S OF THE INTENDED APPI	BED FOR ANY PU R'S REQUEST. TH DEATH, PERSON SYSTEM AND COI LICATION ARE MI	RPOSE OTHER RECIPIENT AL INJURY AN IPONENTS AN ET. COPYRIGH	OF RIE LARY TO P. R THAN CONDUCT OF THIS DOCUME ID PROPERTY DAI ID ASSURING THA IT PARKER, YEAR	IN THE ADVISOR OF A DATA O	THE REFUNCTION OF THE REFUNCTION OF THE REFUNCTION OF IMPROPER USE OF TROUGH IT'S OWN ANALYSIS AND AINTENANCE, SAFETY AND TED ON THIS DOCUMENT. ALL					

ISSUED: 26. Ja REVISED/C M 20. / SUBJECT:	E. Ford nuary 201 HECKED . Levin Apr. 2021	0	F	PARKEF Parke Polymo	R ENG er Hani er Hos	NEERIN nifin Cor e Divisi	IG MANUAL rporation on Europe	PFDE-ES28 REVISION U PAGE:	
Instructions for handling, maintenance, inspection and repair of Parker Polyflex BLACK EAGLE hoses and assemblies 42 of 43									
Hose type	Fitting series	Nip mat	ple erial	Shell material	Max. Temp. °C (°F)	Max. partial pressure pH2S, kPa (psi)	Remarks		
2640N- 24V80	6xx5X-	Nit (S	ronic 50 20910)	316 or 316Ti	66 (150)	100 (15)	Any combination of chlo in situ pH occurring in pr environments is accepta	ride concentration and oduction ble.	
2240N- 32V10 and 2248N- 32V10	1xxS6	43	40 Q&T	316 or 316Ti		0,3 (0,05)	Normally, no special pre for the selection of steel conditions, nevertheless steels can crack.	cautions are required s for use under these , highly susceptible	
2449N- 32V10	1xxS8	43	40 Q&T	316 or 316Ti		0,3 (0,05)	Normally, no special pre for the selection of steel conditions, nevertheless steels can crack.	cautions are required s for use under these , highly susceptible	
		43	40 Q&T	316 or 316Ti		0,3 (0,05)	Normally, no special precautions are required for the selection of steels for use under these conditions, nevertheless, highly susceptible steels can crack. Any combination of chloride concentration ar in situ pH occurring in production environments is acceptable. If chloride concentration is less than 50 mg/l, no restrictions on pH2S and pH are set. * depending on chemical composition of		
2448N- 32V80 and 2580N-	1xxBL-	53 S3	Super Duplex 2750 or 32760	316 or 316Ti		10 (1,5) to 20 (3)*			
32V80	6XX5X-	43	40 Q&T	316 or 316Ti		0,3 (0,05)	Normally, no special pre for the selection of steel conditions, nevertheless steels can crack.	cautions are required s for use under these , highly susceptible	
		Nit (S	ronic 50 20910)	316 or 316Ti	66 (150)	100 (15)	Any combination of chlo in situ pH occurring in pr environments is accepta	ride concentration and oduction ble.	
2648N-	1xxCX-	43	40 Q&T	316 or 316Ti		0,3 (0,05)	Normally, no special precautions are required for the selection of steels for use under these conditions, nevertheless, highly susceptible steels can crack.		
52 V 60		Inc (N	onel 718 107718)	316 or 316Ti	135 (275)		Any combination of hydr concentration, and in sit environments is accepta	ogen sulfide, chloride u pH in production ble.	
THIS DOCUM NOT BE COPI AND ALL FUP PARKER SYS TESTING FOF WARNING RE RIGHTS RESE	ENT AND THE I ED OR DISCLO RTHER USE DIS TEMS OR COM THE FINAL SE QUIREMENTS ERVED.	INFORM/ DSED TO CONTIN IPONENT ELECTIO OF THE	ATION IT CONT/ OTHERS OR US UED AT PARKE IS CAN CAUSE N OF PARKER S INTENDED APPI	NINS IS CONFIDEN SED FOR ANY PUI R'S REQUEST. TH DEATH, PERSON. SYSTEM AND COM LICATION ARE ME	ITIAL AND PR RPOSE OTHEF IE RECIPIENT AL INJURY AN IPONENTS AN ET. COPYRIGH	OPRIETARY TO P/ THAN CONDUCT OF THIS DOCUME D PROPERTY DAI ID ASSURING THA T PARKER. YEAR	ARKER-HANNIFIN CORPORATION AND I ING BUSINESS WITH PARKER, AND MUN TI SADVISED THAT IMPROPER SELEC AAGE, AND IS SOLELY RESPONSIBLE T T ALL PERFORMANCE, FOUDRANCE, IN OF COPYRIGHT IS THE YEAR(S) INDICA	TS AFFILIATES ("PARKER"), MAY ST BE RETURNED OR DESTROYED TION OR IMPROPER USE OF HROUGH ITS OWN ANAL YSIS AND IAINTENANCE, SAFETY AND TED ON THIS DOCUMENT. ALL	

ISSUED: G 26. Jai	. Ford nuary 201	0	F	PARKEF	RENG	NEERIN	IG MANUAL	SPEC: PFDE-ES28
REVISED / C M 20. A	M. Levin 20. Apr. 2021 Parker Hannifin Corporation Polymer Hose Division Europe						rporation on Europe	REVISION U
SUBJECT: Instru	PAGE: 43 of 43							
Hose type	Fitting series	Nip mat	ple erial	Shell material	Max. Temp. °C (°F)	Max. partial pressure pH2S, kPa (psi)	Remarks	
2240N- 48V80 2440N-	1XXTX- 1XXLX- 1XX5X-	434	40 Q&T*	316 or 316Ti		0,3 (0,05)	Normally, no special pred for the selection of steels conditions, nevertheless, steels can crack.	autions are required for use under these highly susceptible
48V80 2640N- 48V80	1XXTX- 1XXLX- 1XX5X-	41 ma	40 Q&T, x. HRC22	316 or 316Ti			Normally, no special pred	cautions are required.
2440N- 48V80	1XXLX-	Inc (N	onel 625 106625)	316 or 316Ti			These materials have been restriction on temperatu concentration, or in situ environments. No limits of parameters are set, but so the values of these parar acceptable.	en used without re, pH2S, chloride pH in production on individual some combinations of neters might not be
*fittings available	out of thi	s mat	erial has b r for clarif	een manuf.	actured ti	ll April 2021	I, they are still in field and	some stock is
THIS DOCUMI NOT BE COPI AND ALL FUR PARKER SYS' TESTING FOR WARNING RE RIGHTS RESE	ENT AND THE I ED OR DISCLO THER USE DIS TEMS OR COM THE FINAL SE QUIREMENTS RVED.	NFORM/ SED TO CONTIN PONENT LECTIO OF THE	ATION IT CONTA OTHERS OR US UED AT PARKE I'S CAN CAUSE I N OF PARKER S INTENDED APPI	NINS IS CONFIDE ED FOR ANY PUI R'S REQUEST. TH DEATH, PERSON LICATION ARE ME	NTIAL AND PRO RPOSE OTHER HE RECIPIENT AL INJURY AN MPONENTS AN ET. COPYRIGH	DPRIETARY TO P THAN CONDUCT OF THIS DOCUME D PROPERTY DAI D ASSURING THA T PARKER. YEAR	ARKER-HANNIFIN CORPORATION AND IN ING BUSINESS WITH PARKER, AND MUS NT IS ADVISED THAT IMPROPER SELEC SOLELY RESPONSIBLE T IT ALL PERFORMANCE, ENDURANCE, M OF COPYRIGHT IS THE YEAR(S) INDICA	'S AFFILIATES ("PARKER"), MAY IT BE RETURNED OR DESTROYED TION OR IMPROPER USE OF IROUGH ITS OWN ANALYSIS AND MINTENANCE, SAFETY AND TED ON THIS DOCUMENT. ALL

PRESSURE DROP TABLES FOR DIFFERENT HOSE SIZES

REMARKS

Figures shown in the table are for 1 m of hose without fittings.

Figures derived from calculation, not from testing.

Medium is water at room temperature. For this conditions, recommended max. fluid velocity is 15 m/sec The recommended max fluid velocity depends on allowable pressure drop. Hoses have been used at higher fluid velocities. These flow figures are marked with a grey background.

FLOWRATES 5 UP TO 150 L/MIN. SIZES 5 MM (-03) UP TO 13 MM (-08)

	Flowrate			Press	sure drop in b	oar/m	
			nominal IDs				
l/min	US	Oilfield	5 mm	6 mm	8 mm	10 mm	13 mm
	Gal/min	BBL/min	-03	-04	-05	-06	-08
5	1.32		0.48	0.16	0.05		
10	2.64		1.68	0.55	0.17	0.07	
15	3.96		3.53	1.14	0.36	0.14	
20	5.28		6.00	1.93	0.60	0.23	0.07
25	6.60			2.91	0.90	0.34	0.10
30	7.93			4.01	1.26	0.47	0.13
35	9.25			6.94	1.67	0.62	0.18
40	10.57				2.14	0.79	0.23
45	11.89				2.66	0.98	0.28
50	13.21				3.23	1.19	0.34
60	15.85	0.38			4.54	1.67	0.47
70	18.49	0.44				2.22	0.62
80	21.13	0.50				2.85	0.80
100	26.42	0.63					1.20
120	31.70	0.75					1.69
150	39.63	0.94					2.55

FLOWRATES 60 UP TO 5000 L/MIN. SIZES 20 MM (-12) UP TO 75 MM (-48)

	Flowrate		Pressure drop in bar/m								
			nominal IDs								
l/min	US	Oilfield	20 mm	25 mm	32 mm	38 mm	50 mm	75 mm			
	Gal/min	BBL/min	-12	-16	-20	-24	-32	-48			
60	15.85	0.38	0.07								
70	18.49	0.44	0.09								
80	21.13	0.50	0.11								
100	26.42	0.63	0.17								
120	31.70	0.75	0.24	0.06							
150	39.63	0.94	0.35	0.09							
200	52.83	1.26	0.60	0.15							
250	66.04	1.57	0.91	0.22	0.07						
300	79.25	1.89	1.28	0.31	0.10						
400	105.67	2.52	2.18	0.52	0.17	0.07					
500	132.09	3.14		0.79	0.26	0.12					
700	184.92	4.40		1.48	0.49	0.21	0.05				
1000	264.17	6.29			0.95	0.40	0.09				
1500	396.26	9.43			2.05	0.85	0.20				
2000	528.35	12.58				1.46	0.34	0.05			
2500	660.43	15.72					0.52	0.08			
3000	792.52	18.87					0.73	0.11			
3500	924.61	22.01						0.15			
4000	1056.69	25.16						0.19			
4500	1188.78	28.30						0.23			
5000	1320.86	31.45						0.28			

RECOMMENDED TIGHTENING PROCEDURES

Connection	Thread sizes	Tightenir ft•lb	ng torque N∙m
High Pressure 1/4" 3/8" 9/16"	9/16" - 18UNF 3/4" - 16UNF 1-1/8" - 12UNF	25 50 75	34 69 103
Medium Pressure 1/4" 3/8" 9/16" 3/4" 1"	7/16" - 20UNF 9/16" - 18UNF 13/16" - 16UNF 3/4" NPSM 1-3/8" - 12UNF	20 30 85 90 125	28 41 117 124 173
Type "M" Swivel A9 A12 A14 A16 A21	9/16" - 18UNF 3/4" - 16UNF 7/8" - 14UNF 1" - 12UNF 1-5/16 - 12UNF	25-30 40-50 50-60 75-85 100-120	34-41 55-69 69-83 103-117 138-166

LEAKAGE AT SWIVEL NUT-TO-ADAPTER JOINT

(Seen by leak at weep hole in swivel nut)

- 1. Reduce system pressure to zero
- 2. Unscrew swivel nut and check cone surfaces of adapter and hose insert.
- 3. If hose insert is damaged, return hose to **polyflex** for repair and retest.
- If cone surfaces look good after cleaning, re-tighten swivel nut. Do not exceed 150% of recommended torque.

LEAKAGE AT TYPE "M" ADAPTER-TO-PORT

(Seen by leak at weep hole in pressure port,or leak at threads for NPT adapters.)

- 1. Reduce system pressure to zero.
- 2. Slacken hose swivel nut.
- 3. Tighten adaptor into port.
- 4. Re-tighten swivel nut.

Never use the swivel nut to tighten the adapter into the port.

TEST EQUIPMENT FOR QUALIFICATION TESTING AND PRODUCTION CONTROL

PRELIMINARY NOTE

Before our hoses and fittings enter the market, they are subjected to a rigorous test program. With the specialised test equipment we test our hoses and fittings according to recognized international standards.

Below you will find a short overview of our test equipment. We also offer a testing service. All testing can be witnessed by an authority of your choice.

All test equipment is calibrated by accredited companies.

1. STATIC PRESSURE TEST RIGS AND CLIMATE CHAMBER

Parker Polyflex is able to conduct all kinds of static pressure tests.

Type of test: leakage, burst, proof pressure, change in length, volumetric expansion Maximum test pressure: 1,000 MPa (145,000 psi). For volumetric expansion: 400 MPa (58,000 psi). Test medium: water or glycol. Applicable standards: ISO 13628-5, ISO 1402, SAE J343

The fully computerized system allows free adjustment of the pressure rating and full documentation.

With another test rig static pressure testing including pressure decay tests on finished hose lengths including large bore hoses, umbilicals, and/or very long lengths can be done. Pressure graphs can be supplied on request.

More static pressure test rigs are installed in the production area. They are used for final pressure testing of ultra high pressure hose assemblies.

The climate chamber can be programmed for cyclic testing at temperatures between -70 °C and +170 °C.

2. IMPULSE TEST RIGS

An impulse test is considered to be the most demanding test, which gives the best indication of the quality of the hose assembly. Parker Polyflex is equipped with the most advanced impulse test rigs, which are used for hose and fitting qualification and periodical quality control testing. With the unique impulse test rig, Parker Polyflex is the only company worldwide, which is able to conduct impulse testing fully complying with ISO 13628-5, EN 1829-2 and ISO 6803 (square pressure curve) at pressures up to 500 MPa (72,500 psi).

Maximum test pressure: 500 MPa (72,500 psi) Maximum medium temperature: 140°C Test medium: mineral oil Applicable standards: ISO 13628-5, EN 1829-2, ISO 6803, SAE J343 Pressure curve: free adjustable to meet national or international standards or specific customer requirements.

3. COLLAPSE PRESSURE TEST RIG

This rig allows testing at external pressures up to 60 MPa (87,000 psi). The dimensions of the pressure chamber and a special arrangement of the hose allows testing of up to 4" hoses. The testing can be conducted at elevated temperatures up to 93 °C. Test medium is water.

Technical	Information
	NOTES

NOTES

PARKER SAFETY GUIDE

! Parker Safety Guide for Selecting and Using Hose, Tubing, Fittings and Related Accessories Publication No. 4400-B.1 Revised: November 2007

WARNING: Failure or improper selection or improper use of hose, tubing, fittings, assemblies or related accessories ("Products") can cause death, personal injury and property damage. Possible consequences of failure or improper selection or improper use of these Products include but are not limited to:

- · Fittings thrown off at high speed.
- · High velocity fluid discharge.

.

- · Explosion or burning of the conveyed fluid.
- Electrocution from high voltage electric powerlines.
- Contact with suddenly moving or falling objects that are controlled by the conveyed fluid.

- · Injections by high-pressure fluid discharge.
 - · Dangerously whipping Hose.
 - Contact with conveyed fluids that may be hot, cold, toxic or otherwise injurious.
- Sparking or explosion caused by static electricity buildup or other sources of electricity.
 Sparking or explosion while spraving paint or
- flammable liquids.
- Injuries resulting from inhalation, ingestion or exposure to fluids. Before selecting or using any of these Products, it is important that you read and follow the instructions below. Only Hose from Parker's Stratoflex Products Division is approved for in flight aerospace applications.

1.0 GENERAL INSTRUCTIONS

1.1 Scope: This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) these Products. For convenience, all rubber and/or thermoplastic products commonly called "hose" or "tubing" are called "Hose" in this safety guide. All assemblies made with Hose are called "Hose Assemblies". All products commonly called "fittings", "couplings" or "adapters" are called "Fittings". All related accessories (including crimping and swaging machines and tooling) are called "Related Accessories". This safety guide is a supplement to and is to be used with the specific Parker publications for the specific Hose, Fittings and Related Accessories that are being considered for use. Parker publications are available at www. parker.com. SAE J1273 (www. sae. o r g) and ISO 171652 (www.ansi.org) alsoprovide recommended practices for hydraulic Hose Assemblies.

1.2 Fail-Safe: Hose, Hose Assemblies and Fittings can and do fail without warning for many reasons. Design all systems and equipment in a fail safe mode, so that failure of the Hose, Hose Assembly or Fitting will not endanger persons or property.

1.3 Distribution: Provide a copy of this safety guide to each person responsible for selecting or using Hose and Fitting products. Do not select or use Parker Hose or Fittings without thoroughly reading and understanding this safety guide as well as the specific Parker publications for the Products.

1.4 User Responsibility: Due to the wide variety of operating conditions and applications for Hose and Fittings, Parker does not represent or warrant that any particular Hose or Fitting is suitable for any specific end use system. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The user, through

PARKER SAFETY GUIDE

its own analysis and testing, is solely responsible for:

Making the final selection of the Products.

Assuring that the user's requirements are met and that the application

presents no health or safety hazards.

• Providing all appropriate health and safety warnings on the equipment on which the Products are used.

• Assuring compliance with all applicable government and industry standards.

1.5 Additional Questions: Call the appropriate Parker technical service department if you have any questions or require any additional information. See the Parker publication for the Products being considered or used, or call 1 800 CPARKER, or go to www.parker.com, for telephone numbers of the appropriate technical service department.

2.0 HOSE AND FITTING SELECTION INSTRUCTIONS

2.1 Electrical Conductivity: Certain applications require that the Hose be nonconductive to prevent electrical current flow. Other applications require the Hose and the Fittings and the Hose/Fitting interface to be sufficiently conductive to drain off static electricity. Extreme care must be exercised when selecting Hose and Fittings for these or any other applications in which electrical conductivity or nonconductivity is a factor. The electrical conductivity or nonconductivity of Hose and Fittings is dependent upon many factors and may be susceptible to change. These factors include but are not limited to the various materials used to make the Hose and the Fittings, Fitting finish (some Fitting finishes are electrically conductive while others are nonconductive), manufacturing methods (including moisture control), how the Fittings

contact the Hose, age and amount of deterioration or damage or other changes, moisture content of the Hose at any particular time, and other factors. The following are considerations for electrically nonconductive and conductive Hose. For other applications consult the individual catalog pages and the appropriate industry or regulatory standards for proper selection.

2.1.1 Electrically Nonconductive Hose:

Certain applications require that the Hose be nonconductive to prevent electrical current flow or to maintain electrical isolation. For applications that require Hose to be electrically nonconductive, including but not limited to applications near high voltage electric lines, only special nonconductive Hose can be used. The manufacturer of the equipment in which the nonconductive Hose is to be used must be consulted to be certain that the Hose and Fittings that are selected are proper for the application. Do not use any Parker Hose or Fittings for any such application requiring nonconductive Hose, including but not limited to applications near high voltage electric lines, unless (i) the application is expressly approved in the Parker technical publication for the product, (ii) the Hose is marked "nonconductive", and (iii) the manufacturer of the equipment on which the Hose is to be used specifically approves the particular Parker Hose and Fittings for such use.

2.1.2 Electrically Conductive Hose: Parker manufactures special Hose for certain applications that require electrically conductive Hose. Parker manufactures special Hose for conveying paint in airless paint spraying applications. This Hose is labeled "Electrically Conductive Airless Paint Spray Hose" on its layline and packaging. This Hose must be properly connected to the appropriate Parker

PARKER SAFETY GUIDE

Fittings and properly grounded in order todissipate dangerous static charge buildup, which occurs in all airless paint spraying applications. Do not use any other Hose for airless paint spraying, even if electrically conductive. Use of any other Hose or failure to properly connect the Hose can cause a fire or an explosion resulting in death, personal injury, and property damage. Parker manufactures a special Hose for certain compressed natural gas ("CNG") applications where static electricity buildup may occur. Parker CNG Hose assemblies comply with the requirements of ANSI/IAS NGV 4.2-1999; CSA 12.52-M99, "Hoses for Natural Gas Vehicles and Dispensing Systems" (www.ansi.org). This Hose is labeled "Electrically Conductive for CNG Use" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate

2.2 Pressure: Hose selection must be made so that the published maximum working pressure of the Hose and Fittings are equal to or greater than the maximum system pressure. The maximum working pressure of a Hose Assembly is the lower of the respective published maximum working pressures of the Hose and the Fittings used. Surge pressures or peak transient pressures in the system must be below the published maximum working pressure for the Hose. Surge pressures and peak pressures can usually only be determined by sensitive electrical instrumentation that measures and indicates pressures at millisecond intervals. Mechanical pressure gauges indicate only average pressures and cannot be used to determine surge pressures or peak transient pressures. Published burst pressure ratings for Hose is for manufacturing test purposes only and is no indication that the Product can be used in applications at the burst pressure or otherwise above the published maximum recommended working pressure.

2.3 Suction: Hoses used for suction applications must be selected insure that the Hose will withstand the vacuum and pressure of the system. Improperly selected Hose may collapse in suction application.

2.4 Temperature: Be certain that fluid and ambient temperatures, both steady and transient, do not exceed the limitations of the Hose. Temperatures below and above the recommended limit can degrade Hose to a point where a failure may occur and release fluid. Properly insulate and protect the Hose Assembly when routing near hot objects (e.g. manifolds). Do not use any Hose in any application where failure of the Hose could result in the conveyed fluids (or vapors or mist from the conveyed fluids) contacting any open flame, molten metal, or other potential fire ignition source that could cause burning or explosion of the conveyed fluids or vapors.

2.5 Fluid Compatibility: Hose Assembly selection must assure compatibility of the Hose tube, cover, reinforcement, and Fittings with the fluid media used. See the fluid compatibility chart in the Parker publication for the product being considered or used. This information is offered only as a guide. Actual service life can only be determined by the end user by testing under all extreme conditions and other analysis. Hose that is chemically compatible with a particular fluid must be assembled using Fittings and adapters containing likewise compatible seals.

2.6 Permeation: Permeation (that is, seepage through the Hose) will occur from inside the Hose to outside when Hose is used with gases, liquid and gas fuels, and refrigerants (including but not limited to such materials as helium, diesel fuel, gasoline, natural gas, or LPG). This permeation may result in

.

PARKER SAFETY GUIDE

high concentrations of vapors which are potentially flammable, explosive, or toxic, and in loss of fluid. Dangerous explosions, fires, and other hazards can result when using the wrong Hose for such applications. The system designer must take into account the fact that this permeation will take place and must not use Hose if this permeation could be hazardous. The system designer must take into account all legal, government, insurance, or any other special regulations which govern the use of fuels and refrigerants. Never use a Hose even though the fluid compatibility is acceptable without considering the potential hazardous effects that can result from permeation through the Hose Assembly. Permeation of moisture from outside the Hose to inside the Hose will also occur in Hose assemblies, regardless of internal pressure. If this moisture permeation would have detrimental effects (particularly, but not limited to refrigeration and air conditioning systems), incorporation of sufficient drying capacity in the system or other appropriate system safeguards should be selected and used.

2.7 Size: Transmission of power by means of pressurized fluid varies with pressure and rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage due to heat generation or excessive fluid velocity.

2.8 Routing: Attention must be given to optimum routing to minimize inherent problems (kinking or flow restriction due to Hose collapse, twisting of the Hose, proximity to hot objects or heat sources). For additional routing recommendations see SAE J1273 and ISO 17165-2. Hose Assemblies have a finite life and if possible, should be installed in a manner that allows for ease of inspection and future replacement. Rubber Hose because of its relative short life, should not be used in residential and commercial buildings for HVAC (heating, ventilating and air conditioning) applications.

2.9 Environment: Care must be taken to insure that the Hose and Fittings are either compatible with or protected from the environment (that is, surrounding conditions) to which they are exposed. Environmental conditions including but not limited to ultraviolet radiation, sunlight, heat, ozone, moisture, water, salt water, chemicals and air pollutants can cause degradation and premature failure.

2.10 Mechanical Loads: External forces can significantly reduce Hose life or cause failure. Mechanical loads which must be considered include excessive flexing, twist, kinking, tensile or side loads, bend radius, and vibration. Use of swivel type Fittings or adapters may be required to insure no twist is put into the Hose. Unusual applications may require special testing prior to Hose selection.

2.11 Physical Damage: Care must be taken to protect Hose from wear, snagging, kinking, bending smaller that minimum bend radius and cutting, any of which can cause premature Hose failure. Any Hose that has been kinked or bent to a radius smaller than the minimum bend radius, and any Hose that has been cut or is cracked or is otherwise damaged should be removed and discarded.

2.12 Proper End Fitting: See instructions 3.2 through 3.5. These recommendations may be substantiated by testing to industry standards

PARKER SAFETY GUIDE

such as SAE J517 for hydraulic applications, or MIL-A-5070, AS1339, or AS3517 for Hoses from Parker's Stratoflex Products Division for aerospace applications.

2.13 Length: When establishing a proper Hose length, motion absorption, Hose length changes due to pressure, and Hose and machine tolerances and movement must be considered.

2.14 Specifications and Standards: When selecting Hose and Fittings, government, industry, and Parker specifications and recommendations must be reviewed and followed as applicable.

2.15 Hose Cleanliness: Hose components may vary in cleanlinesslevels. Care must be taken to insure that the Hose Assembly selected has an adequate level of cleanliness for the application.

2.16 Fire Resistant Fluids: Some fire resistant fluids that are to be conveyed by Hose require use of the same type of Hose as used with petroleum base fluids. Some such fluids require a special Hose, while a few fluids will not work with any Hose at all. See instructions 2.5 and 1.5. The wrong Hose may fail after a very short service. In addition, all liquids but pure water may burn fiercely under certain conditions, and even pure water leakage may be hazardous.

2.17 Radiant Heat: Hose can be heated to destruction without contact by such nearby items as hot manifolds or molten metal. The same heat source may then initiate a fire. This can occur despite the presence of cool air around the Hose.

2.18 Welding or Brazing: When using a torch or arc welder in close proximity to hydraulic lines, the hydraulic lines should be removed or shielded with appropriate fire resistant materials. Flame or weld spatter could burn through the Hose and possibly ignite escaping fluid resulting in a catastrophic failure. Heating of plated parts, including Hose Fittings and adapters, above 450°F (232°C) such as during welding, brazing or soldering may emit deadly gases.

2.19 Atomic Radiation: Atomic radiation affects all materials used in Hose assemblies. Since the long-term effects may be unknown, do not expose Hose assemblies to atomic radiation.

2.20 Aerospace Applications: The only Hose and Fittings that may be used for in flight aerospace applications are those available from Parker's Stratoflex Products Division. Do not use any other Hose or Fittings for in flight applications. Do not use any Hose or Fittings from Parker's Stratoflex Products Division with any other Hose or Fittings, unless expressly approved in writing by the engineering manager or chief engineer of Stratoflex Products Division and verified by the user's own testing and inspection to aerospace industry standards.

2.21 Unlocking Couplings: Ball locking couplings or other Fittings with quick disconnect ability can unintentionally disconnect if they are dragged over obstructions, or if the sleeve or other disconnect member, is bumped or moved enough to cause disconnect. Threaded Fittings should

3.0 HOSE AND FITTING ASSEMBLY AND INSTALLATION INSTRUCTIONS

3.1 Component Inspection: Prior to assembly, a careful examination of the Hose and Fittings must be performed. All components must be checked for correct style, size, catalog number, and length. The Hose must be examined for cleanliness,

PARKER SAFETY GUIDE

obstructions, blisters, cover looseness, kinks, cracks, cuts or any other visible defects. Inspect the Fitting and sealing surfaces for burrs, nicks, corrosion or other imperfections. Do NOT use any component that displays any signs of nonconformance.

3.2 Hose and Fitting Assembly: Do not assemble a Parker Fitting on a Parker Hose that is not specifically listed by Parker for that Fitting, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division. Do not assemble a Parker Fitting on another manufacturer's Hose or a Parker Hose on another manufacturer's Fitting unless (i) the engineering manager or chief engineer of the appropriate Parker division approves the Assembly in writing or that combination is expressly approved in the appropriate Parker literature for the specific Parker product, and (ii) the user verifies the Assembly and the application through analysis and testing. For Parker Hose that does not specify a Parker Fitting, the user is solely responsible for the selection of the proper Fitting and Hose Assembly procedures. See instruction 1.4. To prevent the possibility of problems such as leakage at the Fitting or system contamination, it is important to completely remove all debris from the cutting operation before installation of the Fittings. The Parker published instructions must be followed for assembling the Fittings on the Hose. These instructions are provided in the Parker Fitting catalog for the specific Parker Fitting being used, or by calling 1 800 CPARKER, or at www.parker.com, 3.3 Related Accessories: Do not crimp or swage any Parker Hose or Fitting with anything but the listed swage or crimp machine and dies in accordance with Parker published instructions. Do not crimp or swage another manufacturer's

Fitting with a Parker crimp or swage die unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division.

3.4 Parts: Do not use any Parker Fitting part (including but not limited to socket, shell, nipple, or insert) except with the correct Parker mating parts, in accordance with Parker published instructions, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division.

3.5 Field Attachable/Permanent: Do not reuse any field attachable Hose Fitting that has blown or pulled off a Hose. Do not reuse a Parker permanent Hose Fitting (crimped or swaged) or any part thereof. Complete Hose Assemblies may only be reused after proper inspection under section 4.0. Do not assemble Fittings to any previously used hydraulic Hose that was in service, for use in a fluid power application.

3.6 Pre-Installation Inspection: Prior to installation, a careful examination of the Hose Assembly must be performed. Inspect the Hose Assembly for any damage or defects. DO NOT use any Hose Assembly that displays any signs of nonconformance.

3.7 Minimum Bend Radius: Installation of a Hose at less than the minimum listed bend radius may significantly reduce the Hose life. Particular attention must be given to preclude sharp bending at the Hose to Fitting juncture. Any bending during installation at less than the minimum bend radius must be avoided. If any Hose is kinked during installation, the Hose must be discarded.

3.8 Twist Angle and Orientation: Hose Assembly

PARKER SAFETY GUIDE

installation must be such that relative motion of machine components does not produce twisting.

3.9 Securement: In many applications, it may be necessary to restrain, protect, or guide the Hose to protect it from damage by unnecessary flexing, pressure surges, and contact with other mechanical components. Care must be taken to insure such restraints do not introduce additional stress or wear points.

3.10 Proper Connection of Ports: Proper physical installation of the Hose Assembly requires a correctly installed port connection insuring that no twist or torque is transferred to the Hose when the Fittings are being tightened or otherwise during use..

3.11 External Damage: Proper installation is not complete without insuring that tensile loads, side loads, kinking, flattening, potential abrasion, thread damage or damage to sealing surfaces are corrected or eliminated. See instruction 2.10.

3.12 System Checkout: All air entrapment must be eliminated and the system pressurized to the maximum system pressure (at or below the Hose maximum working pressure) and checked for proper function and freedom from leaks. Personnel must stay out of potential hazardous areas while testing and using.

3.13 Routing: The Hose Assembly should be routed in such a manner so if a failure does occur, the escaping media will not cause personal injury or property damage. In addition, if fluid media comes in contact with hot surfaces, open flame or sparks, a fire or explosion may occur. See section 2.4.

3.14 Ground Fault Equipment Protection Devices

(GFEPDs): WARNING! Fire and Shock Hazard: To minimize the danger of fire if the heating cable of a Multitube bundle is damaged or improperly installed, use a Ground Fault Equipment Protection Device. Electrical fault currents may be insufficient to trip a conventional circuit breaker. For ground fault protection, the IEEE 515:1989 (www.ansi.org) standard for heating cables recommends the use of GFEPDs with a nominal 30 milliampere trip level for "piping systems in classified areas, those areas requiring a high degree of maintenance, or which may be exposed to physical abuse or corrosive atmospheres".

4.0 HOSE AND FITTING MAINTENANCE AND REPLACEMENT INSTRUCTIONS

4.1 Even with proper selection and installation, Hose life may be significantly reduced without a continuing maintenance program. The severity of the application, risk potential from a possible Hose failure, and experience with any Hose failures in the application or in similar applications should determine the frequency of the inspection and the replacement for the Products so that Products are replaced before any failure occurs. A maintenance program must be established and followed by the user and, at minimum, must include instructions 4.2 through 4.7.

4.2 Visual Inspection Hose/Fitting: Any of the following conditions require immediate shut down and replacement of the Hose Assembly:

- · Fitting slippage on Hose;
- Damaged, cracked, cut or abraded cover (any reinforcement exposed);
- · Hard, stiff, heat cracked, or charred Hose;
- · Cracked, damaged, or badly corroded Fittings;
- · Leaks at Fitting or in Hose;
- · Kinked, crushed, flattened or twisted Hose; and
- Blistered, soft, degraded, or loose cover.

J

PARKER SAFETY GUIDE

4.3 Visual Inspection All Other: The following items must be tightened,

repaired, corrected or replaced as required:

- · Leaking port conditions;
- · Excess dirt buildup;
- · Worn clamps, guards or shields; and
- System fluid level, fluid type, and any air entrapment.

4.4 Functional Test: Operate the system at maximum operating pressure and check for possible malfunctions and leaks. Personnel must avoid potential hazardous areas while testing and using the system. See section 2.2.

4.5 Replacement Intervals: Hose assemblies and elastomeric seals used on Hose Fittings and adapters will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Hose Assemblies and elastomeric seals should be inspected and replaced at specific replacement intervals, based on previous service life, government or industry recommendations, or when failures could result in unacceptable downtime, damage, or injury risk. See section 1.2. Hose and Fittings may be subjected to internal mechanical and/or chemical wear from the conveying fluid and may fail without warning. The user must determine the product life under such circumstances by testing.

4.6 Hose Inspection and Failure: Hydraulic power is accomplished by utilizing high pressure fluids to transfer energy and do work. Hoses, Fittings and Hose Assemblies all contribute to this by transmitting fluids at high pressures. Fluids under pressure can be dangerous and potentially lethal and, therefore, extreme caution must be exercised when working with fluids under pressure and handling the Hoses transporting the fluids. From time to time, Hose Assemblies will fail if they are not replaced at proper time intervals. Usually these failures are the result of some form of misapplication, abuse, wear or failure to perform proper maintenance. When Hoses fail, generally the high pressure fluids inside escape in a stream which may or may not be visible to the user. Under no circumstances should the user attempt to locate the leak by "feeling" with their hands or any other part of their body. High pressure fluids can and will penetrate the skin and cause severe tissue damage and possibly loss of limb. Even seemingly minor hydraulic fluid injection injuries must be treated immediately by a physician with knowledge of the tissue damaging properties of hydraulic fluid. If a Hose failure occurs, immediately shut down the equipment and leave the area until pressure has been completely released from the Hose Assembly. Simply shutting down the hydraulic pump may or may not eliminate the pressure in the Hose Assembly. Many times check valves, etc., are employed in a system and can cause pressure to remain in a Hose Assembly even when pumps or equipment are not operating. Tinv holes in the Hose, commonly known as pinholes, can eject small, dangerously powerful but hard to see streams of hydraulic fluid. It may take several minutes or even hours for the pressure to be relieved so that the Hose Assembly may be examined safely. Once the pressure has been reduced to zero, the Hose Assembly may be taken off the equipment and examined. It must always be replaced if a failure has occurred. Never attempt to patch or repair a Hose Assembly that has failed. Consult the nearest Parker distributor or the appropriate Parker division for Hose Assembly replacement information. Never touch or examine a failed Hose Assembly unless it is obvious that the

PARKER SAFETY GUIDE

Hose no longer contains fluid under pressure. The high pressure fluid is extremely dangerous and can cause serious and potentially fatal injury.

4.7 Elastomeric seals: Elastomeric seals will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Elastomeric seals should be inspected and replaced.

4.8 Refrigerant gases: Special care should be taken when working with refrigeration systems. Sudden escape of refrigerant gases can cause blindness if the escaping gases contact the eye and can cause freezing or other severe injuries if it contacts any other portion of the body.

4.9 Compressed natural gas (CNG): Parker CNG Hose Assemblies should be tested after installation and before use, and at least on a monthly basis per ANSI/IAS NGV 4.2-1999; CSA 12.52-M99 Section 4.2 "Visual Inspection Hose/Fitting". The recommended procedure is to pressurize the Hose and check for leaks and to visually inspect the Hose for damage. Caution: Matches, candles, open flame or other sources of ignition shall not be used for Hose inspection. Leak check solutions should be rinsed off after use.

5.0 HOSE STORAGE

5.1 Age Control: Hose and Hose Assemblies must be stored in a manner that facilitates age control and first-in and first-out usage based on manufacturing date of the Hose and Hose Assemblies. The shelf life of rubber Hose or Hose Assemblies that have passed visual inspection and a proof test is 10 years (40 quarters) from the date of manufacture. The shelf life of thermoplastic and polytetrafluoroethylene Hose or Hose Assemblies is considered to be unlimited. 5.2 Storage: Stored Hose and Hose Assemblies must not be subjected to damage that could reduce their expected service life and must be placed in a cool, dark and dry area with the ends capped. Stored Hose and Hose Assemblies must not be exposed to temperature extremes, ozone, oils, corrosive liquids or fumes, solvents, high humidity, rodents, insects, ultraviolet light, electromagnetic fields or radioactive materials.

.

GLOSSARY

Abrasion

Abrasion occurs in numerous forms; two of the more common are the typical rubbing or chafing, with the second being very high frequency, low amplitude friction. This type of abrasion results from pump pressure pulses otherwise known as pump ripple. It can also be caused by equipment vibration or resonance. Abrasion may occur when two hose lines cross or when a hose line rubs or bears against a fixed point. Abrasion resistance is also a function of temperature and attack of the cover material by aggressive chemicals.

Spring guards or other protective sleeving can also ward off premature hose failure resulting from abrasion. Spring guards also distribute bending force often associated with excessive side loading or even kinking at the skirt of the coupling.

Ambient temperature

Exceedingly high or low ambient temperatures will affect the materials from which the hose is constructed and will negatively influence hose life. When at all possible, the hose should be routed in such a manner as to protect it from heat sources. In extreme cold applications, the equipment should be designed with remote relief valves to allow circulation and warming of the oil before hose articulation is attempted. The hose liner (core tube) of choice for extremely high or low temperature is Teflon®. Teflon® is serviceable at temperatures as low as -100°F and as high as +450°. Consult the specific hose operating parameters for more information.

Bend radius

The minimum bend radii listed in this catalog are valid at rated working pressures and indicated service temperatures. Service life of a hose may be shortened if the minimum radius is exceeded or if the hose is flexed continuously in use.

Burst pressure and working pressure

The specified burst pressure for each hose style and dash size are for un-aged hoses tested at normal laboratory temperature in accordance with SAE J343 specification for normal service and technically ideal installations. The maximum recommended working pressure is 1/4 of the minimum rated burst pressure, except as otherwise specifically stated in those product specifications. For more severe service, a higher rated working pressure hose may have to be selected.

Hose installation tips

Establish hose size (I. D.) and style based upon flow rate (GPM), pressure drop, and chemical compatibility with fluid medium. Other significant factors to be considered in hose selection and installation are discussed briefly as follows:

Operating temperature

The temperature range for satisfactory service (maximum hose life) depends to a great extent upon the fluid being conveyed. Use of a hose above maximum specified temperature ratings will shorten hose life due, but not limited, to oxidation, chemical degradation and loss of compression within the coupling.

Pressure effects

Pressure surges and system shocks (spikes) are common in hydraulic systems. The normal 4:1 design factor should reflect these transient pressures. Where these surges and shocks are considered severe or hazardous, the design factor should be increased.

When hose is under pressure, it may change in length by as much as $\pm 3\%$. Installation should compensate for shortening by providing an appropriate amount of slack and for lengthening by allowing space for this growth to be absorbed.

Routing and clamping

Whenever possible, and maximum efforts should be made to do so, hose should be routed to flex in a single plane. Routing hoses in flexure through compound bends results in torsions. When this is unavoidable, the torsion should be distributed over the maximum hose length possible. Wire reinforced hoses suffer the most rapid and severe loss of service life when applied in torsion. Extremely tight and improperly located clamps focus this torsion over short distances.

Analysis of the hose function is required before the proper clamping techniques can be selected. In some applications, hoses must be contained to stay out of harm's way and at the same time be free to rise and fall with equipment articulation. Other applications may require restrictive clamping, in which case a protective material should be used around the hose to provide the grasp without deformation of the hose by the clamp. These techniques also apply to the use of the popular

plastic tie straps. Parker swivel adaptors feature 360° swiveling action that especially suits them for use in applications where the hose moves, bends or twists. Swivel adapters connected to hose assemblies relieve twisting, prevent excessive flexing of the hose, eliminate need for long radius bends, and cushion intraline shock caused by peak system pressure pulses.

method of clamping and clustering hoses with

High pressure adapters

It is critical that the adapter material be properly suited to the fluid media. Widely varying conditions frequently necessitate high pressure adapters constructed of materials other than conventional 316 stainless steel. Since many variables affect the corrosion resistance of metallic materials, it is Parker Hannifin's policy not to recommend materials based on corrosion resistance for specific fluid applications. The published recommended working pressure represent the capability of the subject fitting. Nevertheless, in some instances, the hose, hose fitting or other connector assembled to the adapter may dictate the maximum working pressure. The end-user should read and understand the Parker Safety Guide (Bulletin 4400-B.1) and follow its suggested practices and warnings.

UNIT CONVERSION TABLE

Physical value	Unit	Abbreviation	Conversion Unit	Factor
Length	1 inch	in	mm	25.4
	1 millimetre	mm	in	0.03934
	1 foot	ft	m	0.3048
	1 metre	m	ft	3.28084
Surface	1 square inch	sq in	cm ²	6.4516
	1 square centimetre	cm ²	sq in	0.1550
Cubic content	1 gallon (UK)	gal	1	4.54596
	1 litre	I	gal (UK)	0.219976
	1 gallon (US)	gal	1	3.78533
	1 litre	I	gal (US)	0.264177
Weight	1 pound	lb	kg	0.453592
	1 kilogramme	kg	lb	2.204622
Pressure	1 pound per square inch	psi	bar	0.06895
	1 bar	bar	psi	14.5035
	1 pound per square inch	psi	MPa	0.006895
	1 mega pascal	MPa	psi	145.035
	1 kilo pascal	kPa	bar	0.01
	1 bar	bar	kPa	100
	1 mega pascal	MPa	bar	10
	1 bar	bar	MPa	0.1
Velocity	1 foot per second	ft/s	m/s	0.3048
	1 metre per second	m/s	ft/s	3.28084
Flow rate	1 gallon per minute (UK)	gal/min.	l/min.	4.54596
	1 litre per minute	l/min.	gal/min. (UK)	0.219976
	1 gallon per minute (US)	gal/min.	l/min.	3.78533
	1 litre per minute	l/min.	gal/min. (US)	0.264178
Temperature	Fahrenheit	F	°C	5/9 (F-32)
	Celsius	°C	F	$\frac{C \times 9}{5}$ +32

J

CHAPTER K

INDEX OF PART NUMBERS

| Index |
 | K-2 |
|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| Safety note. |
 | K-8 |

Κ

Κ

PART NUMBER

PAGE

101BL-32-32 F-14, F-16, F-23, F-24
1063X-6-06C
1068X-4-04C
1068X-6-04C
1068X-8-06C
1068X-24-24C
1069X-12-12C
1069X-16-16C
106841_4/C
106AH.8.9C
DoF3-4-4C
106E3-6-4C
106E3-8-8C
DeE4-16-16C
106HV-16-16C
106HV-8-8C
106LX-12-08C
106LX-12-12C4462
106LX-16-12C4462 C-19, C-37
106LX-16-16C4462 C-22, C-23, C-39
106LX-6-05C
106LX-6-06C-M-Subsea
106LX-6-06C4462
106LX-8-06C-M-Subsea
106LX-8-06C4462
106LX-8-08C
106LX-8-08C-M-Subsea
106NX-6-06C
106RX-4-04C
106RX-6-04C
106HX-6-06C
13953-4-40
139E3-6-40
10NDL-33-32-74F117DSY-10N
10NLX-45-49-A0-AFT17 DSV-10N
101L2-00-40-41 IT DOV-101K
19/3X-8.66C B-
1928X-4-04C B-5 C-5 C-6 C-25 C-2
1928X-6-06C
1929X-12-12C
1929X-16-16C
1929X-6-06C
1929X-8-08C
192AH-4-4C

PAGE

Κ

PART NUMBER

192AH-6-6C
192AH-8-8C
192LX-6-05C
192LX-8-08C
192NX-6-06C
192RX-4-04C
192RX-6-06C
19GE3-8-8C
19GE4-16-16C
19GE4-24-16C
19WE3-16-8C
19WE3-8-8C
19WE4-16-16C
19WE4-24-16C
IAY3X-8-06CB-
IAY5X-11-08C-M-Subsea
IAY8X-6-04C
IAYJX-16-12C
IAYLX-11-08C
IAYLX-16-12C4462
IAYLX-8-05C
IAYLX-8-06C4462
IAYUX-6-04C
IAYUX-8-06C
1C95X-38-24COSK-KOP2
IC95X-38-24COSK-TC
IC9LX-30-16C4462
1HBBL-29-32-10K
1HBBL-33-32-10K-L
IHE5X-32-24C4462-FLATTC
IHE5X-32-24C4462-KOP2
1HE5X-48-48-FLAT
1HE5X-48-48-FLAT-2202
1HEBL-32-32-FLAT
1HEBL-32-32-FLAT-2202
IHEBL-32-32-SEG
HECX-32-32-FLAT F-1
HECX-32-32-FLAT-2202 F-1
HEI X-32-2004462-EI AT F-1
HEIX-48-48-FI AT
HES6.32.32-FLAT F-6 F-
11ES6-32-32-EI AT-SC E-6 E-
HES8-22-22-EI AT-SC F-1
HIG9-02-02-1 EAF-00
[1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2
14N5X_39_94C4469_KOP9 E 1
н нул-ус-стоттос-когд
IIIIION-02-2-04-04-02-10
ITIII007*90*90
INNUA-40-40-42UZ

Κ

PART NUMBER

PAGE

1HNBL-32-32	, F-26
1HNBL-32-32-2202	, F-26
1HNCX-32-32	. F-18
1HNCX-32-32-2202	. F-18
1HNLX-32-20C4462	. F-11
1HNLX-48-48	20
1HNS6-32-32	6, F-8
1HNS6-32-32-SC	6, F-8
1HNS0-32-32-SUBSEA	7, F-9 E 10
1HNTX-48-48	F_10
1HNTX-48-48-602	F-19
1Y23X-9-06C	. B-7
1Y25X-12-08C-M-Subsea	C-41
1Y25X-9-08C-M-Subsea	C-41
1Y28X-6-04C	, C-27
1Y2JX-16-12C	.C-20
1Y2LX-12-08C	, C-16
1Y2LX-12-08C-M-SUBSEA	.C-35
1Y2LX-12-12C4462 C-19,	, C-37
1Y2LX-16-12C4462	, C-37
1Y2LX-16-16C4462 C-22, C-23,	, C-39
1Y2LX-6-06C4462	.C-12
1Y2LX-9-06C4462	.0-12
1Y2LX-9-060-M-SUBSEA	.0-33
112UX-0-040	C 21
17207-0-05-INC025	C=34
2022N-04V91	B-5
2022N-06V91	B-7
2022N-08V91	. B-9
2240M-04V38	.C-24
2240N-04V91	. C-4
2240N-32V10	. F-6
2240N-48V80	. F-19
2248N-32V10	. F-8
2340M-04V38	.C-25
2340N-04V91	. C-5
2340N-24V10	.D-10
2370M-06V38	.C-32
23/0N-06/91	. C-9
2380M-04V38	.0-26
2380M-05V38	.0-29
2300II/104701	C_11
2300N-00791	C=1/
2380N-16Vxv	D-9
2390M-12V38	.C-36
2390M-16V38	.C-38

PART NUMBER

Κ

2390N-04Vxy	D-4
2390N-06V91	C-10
2390N-06Vxy	D-5
	C-13
2390N-08Vxy	D-6
2390N-12V91	C-18
2390N-12Vxy	D-7
	C-21
2390N-16Vxy	D-8
2440M-04V38	C-27
2440M-05V38	C-30
2440M-06V38	C-33
2440M-08V38	C-35
2440M-12V38	C-37
2440M-16V38-5K	C-39
2440N-04V91	C-7
2440N-06V91	C-12
2440N-08V91-10K	C-15
	C-19
2440N-16V91	C-22
2440N-16V91-10K	C-23
2440N-20V80	F-11
2440N-48V80	F-20
	C-28
2448M-05V38	C-31
2448M-06V38	C-34
2448M-32V88	F-23
2448N-04V91	C-8
2448N-08V91	C-16
2448N-32V80	F-14
2448P-04V30	C-40
2448P-08V30	C-41
2449N-32V10	F-10
2580M-32V88	F-25
2580N-32V80	F-16
2640M-24V88	F-22
2640N-08V91	C-17
2640N-12V91	C-20
2640N-24V80	F-12
2640N-24V80-15K	F-13
2640N-48V80	F-21
2648N-32V80	F-18
575XN-4	B-4
575XN-6	B-6
575XN-8	B-8
6015X-32-32-TC	F-25
68K5X-29-32-API17DSVF-14, F-16, F-23, I	F-25
6HE5X-32-32-602APITC	F-24
6HE5X-32-32-FLATTC	F-26

0FN93X-32-32-00210
6HN5X-32-32-TC
HCRV-16
HCRV-8B-10
HS-03
HS-05
HS-08
HS-12
HS-16
HS-20
HS-28
HS-32

κ

FOR YOUR SAFETY

The hose assemblies listed in this catalogue are all special constructions with the hose having up to eight spiral layers of steel wire. Due to this construction, pressures are achieved which far exceed German and international standards. These hose types are manufactured and tested according to the Polyflex standards which have proved to be effective over many years.

Polyflex hose assemblies are used at considerable working pressures. The critical area of a hose assembly is the connection between flexible hose and rigid fitting (crimping area). Only the use of original Polyflex components (hose, fittings and tooling) and full compliance with the Polyflex assembly instructions can guarantee safety and conformity with standards. It is essential that training be given to customers in the hose assembly process in order to make high quality Polyflex maximum pressure hose assemblies.

For the production and testing of the hose assemblies relevant to the applications, the guidelines and technical regulations as well as the protection and hazard prevention rulings must be adhered to. The manufacturers of Polyflex hose assemblies are obliged to mark these hose assemblies according to the regulations and to verify their safety by a final pressure test.

Non-compliance with these rules can lead to the premature failure of the hose assembly and the loss of warranty.

At Parker, we're guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 00800 27 27 5374

Fluid & Gas Handling

Key Markets Aeral lift Agriculture Bulk chemical handling Construction machinery Food & beverage Fuel & gas delivery Industrial machinery Life sciences Manine Mining Mining Mobile Oli & gas Renewable energy Transportation

Key Products

Check valves Connectors for low pressure fluid conveyance Deap sea untilicals Diagnostic equipment Hose couplings Industrial hose Mooring systems & power cables PTEF hose & hubing Quick couplings Aubler & Ihermoplastic hose Tubei filings & adapters Tubing & paster filtings

Aerospace Key Markets

Aftermarket services Commercial transports Engines General & business aviation Helicopters Launch vehicles Mitary aircraft Missiles Power generation Regional transports Urmanned aerial vehicles

Key Products

Control systems & actuation products Engine systems & components Fluid conveyence systems & components Fluid metering, delivery & atomization devices Fluid metring systems Hydraulic systems Hydraulic systems Hydraulic systems Thermil management Thermil management

Hydraulics Key Markets

Aerial lift Agriculture Alternative energy Construction machinery Forestry Industrial machinery Machine tools Marine Material handling Mining Oil & gas Power generation Refuse vehicles Renewable energy Truck hydraulics Turf eouroment

Key Products

Accumulators Cartridge valves Electrohydraulic achators Human machine interfaces Hydraulic oplinders Hydraulic oplinders Hydraulic oplinders & pumps Hydraulic oplinders & Hydraulic oplinders Hydraulic orbus Hydraulic orbus Power tarks -offs Power tarks Rolary achators Servens

Parker's Motion & Control Technologies

Climate Control Key Markets

Agriculture Air conditioning Construction Machinery Food & beverage Industrial machinery Life sciences Oil & gas Precision cooling Process Refrigeration Transportation

Key Products

Accimulans Advanced actuators Og, controls Bectronic controllers Filter drives Hand shut-off valves Heat exchangers Heat exchangers Hease & fittings Pressure regulating valves Refrigerant distributors Safety relef valves Solerioit valves

Pneumatics Key Markets

Aerospace Corrveyor & material handling Factory automation Life science & medical Machine tools Packaging machinery Transportation & automotive

Key Products

Ar peparation Brass fittings & lavles Manifolds Pharamátic actuators & grippers Pharamátic actuators & grippers Pharamátic valves & controls Quark disconnects Rotary actuators Structural extensions Thermoglastic tubing & fittings Vacuum generators, cups & sensors

Electromechanical Key Markets

Aerospace Factory automation Life science & medical Machine tools Packaging machinery Paper machinery Paper machinery & converting Primary metals Semiconductor & electronics Textile Wire & cable

Key Products

AODC drives & systems Electric actuators gentry robots & sides Electrohydrostatic actuation systems Electronechamical actuation systems Human machine interface Linear motors Stepper motors, servo motors, drives & controls Structural extursions

Process Control

Key Markets Alternative fuels Bopharmaceuticals Chemical & retining Food & beverage Microelectronics Nuclear Power Offshore oil exploration Oli & gas Pharmaceuticals Power generation Puip & paper Sheel Water/washered

Key Products

Anaylacial Instruments Anaylacial Sangte conditioning Opennical Injection Ititings & vides Buccopymer chemical deferry fittings, vides & pumps High puth gas feldwey fittings, vides, regulators & digital flow controllers Industrial mass flow meters/ controllers Perceision industrial regulators & fito most flow meters/ controllers Perceision industrial regulators & fitor attrollers Processo control fittings, valves, Processo control fittings, valves, Processo control fittings, valves,

Filtration Key Markets

Acrospace Food & beverage Industrial plant & equipment Life sciences Marine Mobile equipment Oil & gas Power generation & renewable energy Process Transportation Water Purification

Key Products

Analytical gas generators Compressed in filters & dyvers Engine air, coolent, fuel & ol filteriton systems Fluid condition monitoring systems Hydrogen, nitrogen & zero air generators Instrumentation filters Mercolification Steller air filteritors Weter desimation & purification filters & systems

Sealing & Shielding

Key Markets Aerospace Chemical processing Consumer Ruid power General industrial Information technology Life sciences Microelectronics Mitiary Oli & gas Power generation Renewable energy Telecommunications

Key Products

Dynamic seals Eastomeric o-rings Eactor-medical instrument design & assembly EMI shelding Exhided & precision-out, fabricated elastomeric seals Homogeneous & inserted elastomeric shapes Medical device fabrication elastomeric shapes Medical device fabrication & assembly Metal & pitastic retained composite seals Shielded optical windows Shielded optical windows Thermal management Voration dampering

ENGINEERING YOUR SUCCESS.

Parker Hannifin Manufacturing Germany GmbH & Co. KG polyflex Division An der Tuchbleiche 4 68623 Lampertheim (Hüttenfeld) Tel.: +49 (0)6256 81-0 www.parker.com/polyflex polyflex@parker.com

© 2023 Parker Hannifin Corporation. All rights reserved. Catalogue 4465/UK 08/2023